10 research outputs found

    Pharmaceutical and Microplastic Pollution before and during the COVID-19 Pandemic in Surface Water, Wastewater, and Groundwater

    Get PDF
    Pharmaceuticals, microplastics, and oil spills are the most hazardous contaminants in aquatic environments. The COVID-19 pandemic enhanced pharmaceutical and microplastic contamination in aquatic environments. The present study aimed to investigate the prevalence of pharmaceutical and microplastic pollution on a global scale. This study assessed the results of pharmaceutical contamination in 25 countries and microplastic pollution in 13 countries. The findings show that pharmaceutical residues were detected in surface water, groundwater, and wastewater influents and effluents. In total, 43 types of pharmaceutical products were detected in 25 countries. Caffeine, acetaminophen, ibuprofen, sulfamethoxazole, and carbamazepine were the most abundant. In total, 32 types of polymers were detected in 13 countries. In the case of microplastics, polypropylene, polyethylene, polystyrene, and polyethylene terephthalate were the more abundant polymers. Particles with a size of 1–2.5 mm and 2.5–5 mm accounted for half of the microplastics present in 13 countries. This study provides new evidence of the importance of emerging pollutants in aquatic environments before and during the COVID-19 pandemic

    Poly(3-alkylthiophenes): new sorption materials for solid phase microextraction of drugs isolated from human plasma

    Get PDF
    A novel sorbent in solid phase microextraction (SPME) method based on poly(3-alkylthiophenes) was used in the isolation of linezolid from human plasma samples following liquid chromatography determination. The effect of extraction time on the sorption capacity of the SPME process was studied and pointed at 10 min both for adsorption and desorption. Poly(3-methylthiophene) and poly(3-nonylthiophene) were applied for the extraction of linezolid from water solutions. In plasma samples, four coatings including polythiophene and poly(3-penthylthiophene) were investigated. With these measurements, correlation coefficients were calculated in the range from 0.9820 to 0.9995, and the relative standard deviations were below 15%. That allowed claiming that the synthesized and described materials can be successfully applied in the analysis of linezolid also from other matrices such as urine or blood

    Development of novel molecularly imprinted solid-phase microextraction fibers and their application for the determination of antibiotic drugs in biological samples by SPME-LC/MSn

    Get PDF
    Novel molecularly imprinted polymer (MIP)-coated fibers for solid-phase microextraction (SPME) fibers were prepared by using linezolid as the template molecule. The characteristics and application of these fibers were investigated. The polypyrrole, polythiophene, and poly(3-methylthiophene) coatings were prepared in the electrochemical polymerization way. The molecularly imprinted SPME coatings display a high selectivity toward linezolid. Molecularly imprinted coatings showed a stable and reproducible response without any influence of interferents commonly existing in biological samples. High-performance liquid chromatography with spectroscopic UV and mass spectrometry (MS) detectors were used for the determination of selected antibiotic drugs (linezolid, daptomycin, amoxicillin). The isolation and preconcentration of selected antibiotic drugs from new types of biological samples (acellular and protein-free simulated body fluid) and human plasma samples were performed. The SPME MIP-coated fibers are suitable for the selective extraction of antibiotic drugs in biological samples

    Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain

    No full text
    Background/Purpose: In this study, an acidophilic actinobacteria strain was used as a novel reducing agent for a single-step synthesis of nanostructure silver particles. We used a Streptacidiphilus durhamensis HGG16n isolate for efficient synthesis of bioactive silver nanoparticles [bio(AgNPs)] in an inexpensive, eco-friendly, and nontoxic manner. The obtained bio(AgNPs) exhibited unique physicochemical and biochemical properties. Methods: Structural, morphological, and optical properties of the synthesized biocolloids were characterized by spectroscopy, dynamic light scattering, and electron microscopy approaches. The antimicrobial activity was evaluated using the well- and disc-diffusion methods. Results: The obtained crystalline structure and stable biosynthesized silver nanoparticles ranged in size from 8 nm to 48 nm and were mostly spherical in shape. Antimicrobial assays of the silver nanoparticles against pathogenic bacteria showed the highest antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, and Proteus mirabilis, followed by Escherichia coli, Klebsiella pneumoniae, and Bacillus subtilis. Moreover, the synergistic effect of bio(AgNPs) with various commercially available antibiotics was also evaluated. Conclusion: These results provide insight into the development of new antimicrobial agents along with synergistic enhancement of the antibacterial mechanism against clinical bacteria
    corecore