2 research outputs found

    An Evaluation of the Hydrolytic Stability of Selected Experimental Dental Matrices and Composites

    No full text
    Materials with potential use as dental restoration should be evaluated in an aggressive environment. Such accelerated aging is widely used in other industries and allows the assessment of service life. In the presented study, three neat resins (UDMA/Bis-GMA/TEGDMA 70/10/20 wt.%, UDMA/Bis-GMA/TEGDMA 40/40/20 wt.% and UDMA/Bis-EMA/TEGDMA 40/40/20 wt.%) and three composites based on these matrices were tested before and after aging protocols (I-7500 cycles, 5 °C and 55 °C, water and 7 days, 60 °C, 0.1 M NaOH; II-5 days, 55 °C, water and 7 days, 60 °C, 0.1 M NaOH). Flexural strength (FS), diametral tensile strength (DTS) and hardness (HV) were determined. Applied aging protocols resulted in a decrease in the value of the FS, DTS and HV. Larger changes were noticed for the neat resins. Materials in which the content of bis-GMA was lower or substituted by bis-EMA showed better resistance to degradation. The choice of mixtures with monomers characterized by lower sorption values may favorably affect hydrolytic stability. It was shown that for composites there was a drastic decrease in hardness, which suggests a more superficial effect of the used protocols. However, degradation of the surface layer can result in a growing problem over time given that the mastication processes are an inherent element in the oral environment
    corecore