3 research outputs found
Crystal Growth and Electronic Phase Diagram of 4\u3cem\u3ed\u3c/em\u3e-doped Na\u3csub\u3e1-\u3cem\u3eδ\u3c/em\u3e\u3c/sub\u3eFe\u3csub\u3e1-\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eRh\u3csub\u3e\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eAs in Comparison to 3\u3cem\u3ed\u3c/em\u3e-doped Na\u3csub\u3e1-\u3cem\u3eδ\u3c/em\u3e\u3c/sub\u3eFe\u3csub\u3e1-\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eCo\u3csub\u3e\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eAs
Single crystals of Na1−δFe1−xTxAs with T = Co, Rh have been grown using a self-flux technique. The crystals were thoroughly characterized by powder x-ray diffraction, magnetic susceptibility, and electronic transport with particular focus on the Rh-doped samples. Measurements of the specific heat and ARPES were conducted exemplarily for the optimally doped compositions. The spin-density wave transition (SDW) observed for samples with low Rh concentration (0≤x≤0.013) is fully suppressed in the optimally doped sample. The superconducting transition temperature (Tc) is enhanced from 10 K in Na1−δFeAs to 21 K in the optimally doped sample (x=0.019) of the Na1−δFe1−xRhxAs series and decreases for the overdoped compounds, revealing a typical shape for the superconducting part of the electronic phase diagram. Remarkably, the phase diagram is almost identical to that of Co-doped Na1−δFeAs, suggesting a generic phase diagram for both dopants