72 research outputs found
The TWA 3 Young Triple System: Orbits, Disks, Evolution
We have characterized the spectroscopic orbit of the TWA 3A binary and
provide preliminary families of probable solutions for the TWA 3A visual orbit
as well as for the wide TWA 3A--B orbit. TWA 3 is a hierarchical triple located
at 34 pc in the 10 Myr old TW Hya association. The wide component
separation is 1."55; the close pair was first identified as a possible binary
almost 20 years ago. We initially identified the 35-day period orbital solution
using high-resolution infrared spectroscopy which angularly resolved the A and
B components. We then refined the preliminary orbit by combining the infrared
data with a re-analysis of our high-resolution optical spectroscopy. The
orbital period from the combined spectroscopic solution is 35 days, the
eccentricity is 0.63, and the mass ratio is 0.84; although this
high mass ratio would suggest that optical spectroscopy alone should be
sufficient to identify the orbital solution, the presence of the tertiary B
component likely introduced confusion in the blended optical spectra. Using
millimeter imaging from the literature, we also estimate the inclinations of
the stellar orbital planes with respect to the TWA 3A circumbinary disk
inclination and find that all three planes are likely misaligned by at least
30 degrees. The TWA 3A spectroscopic binary components have spectral
types of M4.0 and M4.5; TWA 3B is an M3. We speculate that the system formed as
a triple, is bound, and that its properties were shaped by dynamical
interactions between the inclined orbits and disk.Comment: Accepted to Ap
Accreting Protoplanets in the LkCa 15 Transition Disk
Exoplanet detections have revolutionized astronomy, offering new insights
into solar system architecture and planet demographics. While nearly 1900
exoplanets have now been discovered and confirmed, none are still in the
process of formation. Transition discs, protoplanetary disks with inner
clearings best explained by the influence of accreting planets, are natural
laboratories for the study of planet formation. Some transition discs show
evidence for the presence of young planets in the form of disc asymmetries or
infrared sources detected within their clearings, as in the case of LkCa 15.
Attempts to observe directly signatures of accretion onto protoplanets have
hitherto proven unsuccessful. Here we report adaptive optics observations of
LkCa 15 that probe within the disc clearing. With accurate source positions
over multiple epochs spanning 2009 - 2015, we infer the presence of multiple
companions on Keplerian orbits. We directly detect H{\alpha} emission from the
innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into
the potential well of an accreting protoplanet.Comment: 35 pages, 3 figures, 1 table, 9 extended data item
An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO
We present H band spectroscopic and Hα photometric observations of HD 100546 obtained with the Gemini Planet Imager and the Magellan Visible AO camera. We detect H band emission at the location of the protoplanet HD 100546 b, but show that the choice of data processing parameters strongly affects the morphology of this source. It appears point-like in some aggressive reductions, but rejoins an extended disk structure in the majority of the others. Furthermore, we demonstrate that this emission appears stationary on a timescale of 4.6 years, inconsistent at the 2σ level with a Keplerian clockwise orbit at 59 au in the disk plane. The H band spectrum of the emission is inconsistent with any type of low effective temperature object or accreting protoplanetary disk. It strongly suggests a scattered-light origin, as this is consistent with the spectrum of the star and the spectra extracted at other locations in the disk. A non-detection at the 5σ level of HD 100546 b in differential Hα imaging places an upper limit, assuming the protoplanet lies in a gap free of extinction, on the accretion luminosity of 1.7 × 10−4 L ⊙ and for 1 R Jup. These limits are comparable to the accretion luminosity and accretion rate of T-Tauri stars or LkCa 15 b. Taken together, these lines of evidence suggest that the H band source at the location of HD 100546 b is not emitted by a planetary photosphere or an accreting circumplanetary disk but is a disk feature enhanced by the point-spread function subtraction process. This non-detection is consistent with the non-detection in the K band reported in an earlier study but does not exclude the possibility that HD 100546 b is deeply embedded
Genome wide linkage study, using a 250K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population
Multiple factors are involved in the variability of host's response to P. falciparum infection, like the intensity and seasonality of malaria transmission, the virulence of parasite and host characteristics like age or genetic make-up. Although admitted nowadays, the involvement of host genetic factors remains unclear. Discordant results exist, even concerning the best-known malaria resistance genes that determine the structure or function of red blood cells. Here we report on a genomewide linkage and association study for P. falciparum infection intensity and mild malaria attack among a Senegalese population of children and young adults from 2 to 18 years old. A high density single nucleotide polymorphisms (SNP) genome scan (Affimetrix GeneChip Human Mapping 250K-nsp) was performed for 626 individuals: i.e. 249 parents and 377 children out of the 504 ones included in the follow-up. The population belongs to a unique ethnic group and was closely followed-up during 3 years. Genome-wide linkage analyses were performed on four clinical and parasitological phenotypes and association analyses using the family based association tests (FBAT) method were carried out in regions previously linked to malaria phenotypes in literature and in the regions for which we identified a linkage peak. Analyses revealed three strongly suggestive evidences for linkage: between mild malaria attack and both the 6p25.1 and the 12q22 regions (empirical p-value = 5 x 10(-5) and 96 x 10(-5) respectively), and between the 20p11q11 region and the prevalence of parasite density in asymptomatic children (empirical p-value = 1.5 x 10(-4)). Family based association analysis pointed out one significant association between the intensity of plasmodial infection and a polymorphism located in ARHGAP26 gene in the 5q31-q33 region (p-value = 3.7 x 10(-5)). This study identified three candidate regions, two of them containing genes that could point out new pathways implicated in the response to malaria infection. Furthermore, we detected one gene associated with malaria infection in the 5q31-q33 region
Vector-apodizing phase plate coronagraph: design, current performance, and future development [Invited]
Instrumentatio
Spatial Localization of Electromagnetic Radiation Sources by Cascade Neural Network Model with Noise Reduction
In this paper, the Direction of Arrival - DoA estimation for two mobile sources was performed by using the Single Multilayer Perceptron (MLP) neural network model (SMLP-DoA) and the Cascade MLP model(CMLP). The latter model consists of two neural networks connected in a cascade where the outputs of the first MLP that rejects noise represent the inputs to the second network in a cascade. The outputs of the neural network models determine the direction of arrival of the incoming signals. Two cases were considered, in the first case the neural networks were trained on the samples that were without noise, and in the second with samples containing noise. Both considered neural network models were tested with noisy samples. The results of these two neural models are compared to the results achieved by the RootMUSIC algorithm. The presented results show that the proposed CMLP model has a higher accuracy in determining the angular positions of sources compared to the classical SMLP-DoA model and the RootMUSIC algorithm. Moreover, the CMLP model executes significantly faster compared to the model based on the RootMUSIC algorithm
Spatial Localization of Electromagnetic Radiation Sources by Cascade Neural Network Model with Noise Reduction
In this paper, the Direction of Arrival - DoA estimation for two mobile sources was performed by using the Single Multilayer Perceptron (MLP) neural network model (SMLP-DoA) and the Cascade MLP model(CMLP). The latter model consists of two neural networks connected in a cascade where the outputs of the first MLP that rejects noise represent the inputs to the second network in a cascade. The outputs of the neural network models determine the direction of arrival of the incoming signals. Two cases were considered, in the first case the neural networks were trained on the samples that were without noise, and in the second with samples containing noise. Both considered neural network models were tested with noisy samples. The results of these two neural models are compared to the results achieved by the RootMUSIC algorithm. The presented results show that the proposed CMLP model has a higher accuracy in determining the angular positions of sources compared to the classical SMLP-DoA model and the RootMUSIC algorithm. Moreover, the CMLP model executes significantly faster compared to the model based on the RootMUSIC algorithm
- …