5 research outputs found

    New Quaternary geochronometric constraints on river incision in the Virginia Piedmont: Relative contributions of climate, base-level fall, knickpoint retreat, and active tectonics

    Get PDF
    River terraces are fluvial landforms that represent flood plains abandoned through river incision and, when accurately correlated and dated, can serve as paleogeodetic markers, indicating the elevation and location of past channels and the subsequent fluvial and tectonic processes shaping the landscape. Fluvial terraces are most useful when the incision processes that caused their abandonment and formation are better understood. This thesis studies river incision reconstructed from fluvial terraces of the South Anna River in the central Virginia Piedmont, USA. The South Anna River flows directly above an active fault, on which large, but infrequent seismic events have occurred, and the most recent event was the 23 August 2011 Mineral earthquake. Two conceptual incision models are tested to better understand the fluvial response to active tectonics in this region: 1) spatially-uniform vertical incision and 2) diachronous horizontal knickpoint retreat. Here, terraces and incision were evaluated in the context of a 1:24,000 scale surficial map of alluvial deposits, optically stimulated luminescence (OSL) and infrared luminescence (IRSL) geochronology, and knickpoint celerity modeling. The South Anna River and its tributaries traverse across the geologic, topographic and structural grain of central Virginia Piedmont, USA, a region known for Late Cenozoic base-level fall, high amplitude climate changes, and historic seismicity. Litho- and pedostratigraphically correlative deposits are found to form five groups of terraces (Qt1-Qt5) with similar, but not exact relative elevations above modern channel. Within these groups, the terraces have similar OSL/IRSL ages that do not systematically decrease in age upstream towards knickpoint in the modern channel. Similarly, the modeled rate of knickpoint retreat through the South Anna channel of ~7-14km/Ma is too slow to explain the time-transgressive OSL/IRSL dates for any terrace group. Terrace formation by knickpoint migration and horizontal floodplain abandonment is rejected as a dominant process in terrace formation, in favor of more spatially-uniform vertical incision. In this landscape, the OSL/IRSL results suggest that flood plains are widened and then are abandoned and become terraces as the South Anna channel responds to climatically-driven unsteady changes in discharge and sediment yield. The complex age-elevation relationships of terraces proximal to epicenter of the 23 August 2011 Mineral earthquake argue for a terrace correlation that allows for rock uplift consistent with the co-seismic response of the 2011 Mineral earthquake

    The Applicability of Time-Integrated Unit Stream Power for Estimating Bridge Pier Scour Using Noncontact Methods in a Gravel-Bed River

    No full text
    In near-field remote sensing, noncontact methods (radars) that measure stage and surface water velocity have the potential to supplement traditional bridge scour monitoring tools because they are safer to access and are less likely to be damaged compared with in-stream sensors. The objective of this study was to evaluate the use of radars for monitoring the hydraulic conditions that contribute to bridge–pier scour in gravel-bed channels. Measurements collected with a radar were also leveraged along with minimal field measurements to evaluate whether time-integrated stream power per unit area (Ω) was correlated with observed scour depth at a scour-critical bridge in Colorado. The results of this study showed that (1) there was close agreement between radar-based and U.S. Geological Survey streamgage-based measurements of stage and discharge, indicating that radars may be viable tools for monitoring flow conditions that lead to bridge pier scour; (2) Ω and pier scour depth were correlated, indicating that radar-derived Ω measurements may be used to estimate scour depth in real time and predict scour depth based on the measured trajectory of Ω. The approach presented in this study is intended to supplement, rather than replace, existing high-fidelity scour monitoring techniques and provide data quickly in information-poor areas

    The Applicability of Time-Integrated Unit Stream Power for Estimating Bridge Pier Scour Using Noncontact Methods in a Gravel-Bed River

    No full text
    In near-field remote sensing, noncontact methods (radars) that measure stage and surface water velocity have the potential to supplement traditional bridge scour monitoring tools because they are safer to access and are less likely to be damaged compared with in-stream sensors. The objective of this study was to evaluate the use of radars for monitoring the hydraulic conditions that contribute to bridge–pier scour in gravel-bed channels. Measurements collected with a radar were also leveraged along with minimal field measurements to evaluate whether time-integrated stream power per unit area (Ω) was correlated with observed scour depth at a scour-critical bridge in Colorado. The results of this study showed that (1) there was close agreement between radar-based and U.S. Geological Survey streamgage-based measurements of stage and discharge, indicating that radars may be viable tools for monitoring flow conditions that lead to bridge pier scour; (2) Ω and pier scour depth were correlated, indicating that radar-derived Ω measurements may be used to estimate scour depth in real time and predict scour depth based on the measured trajectory of Ω. The approach presented in this study is intended to supplement, rather than replace, existing high-fidelity scour monitoring techniques and provide data quickly in information-poor areas

    Geomorphology, Active Tectonics, and Landscape Evolution in the Mid-Atlantic Region

    No full text
    In 2014, the geomorphology community marked the 125th birthday of one of its most influential papers, ‘The Rivers and Valleys of Pennsylvania’ by William Morris Davis. Inspired by Davis’s work, the Appalachian landscape rapidly became fertile ground for the development and testing of several grand landscape evolution paradigms, culminating with John Hack’s dynamic equilibrium in 1960. As part of the 2015 GSA Annual Meeting, the Geomorphology, Active Tectonics, and Landscape Evolution field trip offers an excellent venue for exploring Appalachian geomorphology through the lens of the Appalachian landscape, leveraging exciting research by a new generation of process-oriented geomorphologists and geologic field mapping. Important geomorphologic scholarship has recently used the Appalachian landscape as the testing ground for ideas on long- and short-term erosion, dynamic topography, glacial-isostatic adjustments, active tectonics in an intraplate setting, river incision, periglacial processes, and soil-saprolite formation. This field trip explores a geologic and geomorphic transect of the mid-Atlantic margin, starting in the Blue Ridge of Virginia and proceeding to the east across the Piedmont to the Coastal Plain. The emphasis here will not only be on the geomorphology, but also the underlying geology that establishes the template and foundation upon which surface processes have etched out the familiar Appalachian landscape. The first day focuses on new and published work that highlights Cenozoic sedimentary deposits, soils, paleosols, and geomorphic markers (terraces and knickpoints) that are being used to reconstruct a late Cenozoic history of erosion, deposition, climate change, and active tectonics. The second day is similarly devoted to new and published work documenting the fluvial geomorphic response to active tectonics in the Central Virginia seismic zone (CVSZ), site of the 2011 M 5.8 Mineral earthquake and the integrated record of Appalachian erosion preserved on the Coastal Plain. The trip concludes on Day 3, joining the Kirk Bryan Field Trip at Great Falls, Virginia/Maryland, to explore and discuss the dramatic processes of base-level fall, fluvial incision, and knickpoint retreat
    corecore