2 research outputs found

    The seasonality of cholera in sub-Saharan Africa: a statistical modelling study

    Get PDF
    Background: Cholera remains a major threat in sub-Saharan Africa (SSA), where some of the highest case-fatality rates are reported. Knowing in what months and where cholera tends to occur across the continent could aid in improving efforts to eliminate cholera as a public health concern. However, largely due to the absence of unified large-scale datasets, no continent-wide estimates exist. In this study, we aimed to estimate cholera seasonality across SSA and explore the correlation between hydroclimatic variables and cholera seasonality. Methods: Using the global cholera database of the Global Task Force on Cholera Control, we developed statistical models to synthesise data across spatial and temporal scales to infer the seasonality of excess (defined as incidence higher than the 2010–16 mean incidence rate) suspected cholera occurrence in SSA. We developed a Bayesian statistical model to infer the monthly risk of excess cholera at the first and second administrative levels. Seasonality patterns were then grouped into spatial clusters. Finally, we studied the association between seasonality estimates and hydroclimatic variables (mean monthly fraction of area flooded, mean monthly air temperature, and cumulative monthly precipitation). Findings: 24 (71%) of the 34 countries studied had seasonal patterns of excess cholera risk, corresponding to approximately 86% of the SSA population. 12 (50%) of these 24 countries also had subnational differences in seasonality patterns, with strong differences in seasonality strength between regions. Seasonality patterns clustered into two macroregions (west Africa and the Sahel vs eastern and southern Africa), which were composed of subregional clusters with varying degrees of seasonality. Exploratory association analysis found most consistent and positive correlations between cholera seasonality and precipitation and, to a lesser extent, between cholera seasonality and temperature and flooding. Interpretation: Widespread cholera seasonality in SSA offers opportunities for intervention planning. Further studies are needed to study the association between cholera and climate. Funding: US National Aeronautics and Space Administration Applied Sciences Program and the Bill & Melinda Gates Foundation

    Estimating the proportion of clinically suspected cholera cases that are true Vibrio cholerae infections: A systematic review and meta-analysis

    Get PDF
    Background Cholera: surveillance relies on clinical diagnosis of acute watery : diarrhea. Suspected cholera case definitions have high sensitivity but low specificity, challenging our ability to characterize cholera burden and epidemiology. Our objective was to estimate the proportion of clinically suspected cholera that are true Vibrio cholerae infections and identify factors that explain variation in positivity. Methods and findings We conducted a systematic review of studies that tested ≥10 suspected cholera cases for V. cholerae O1/O139 using culture, PCR, and/or a rapid diagnostic test. We searched PubMed, Embase, Scopus, and Google Scholar for studies that sampled at least one suspected case between January 1, 2000 and April 19, 2023, to reflect contemporary patterns in V. cholerae positivity. We estimated diagnostic test sensitivity and specificity using a latent class meta-analysis. We estimated V. cholerae positivity using a random-effects meta-analysis, adjusting for test performance. We included 119 studies from 30 countries. V. cholerae positivity was lower in studies with representative sampling and in studies that set minimum ages in suspected case definitions. After adjusting for test performance, on average, 52% (95% credible interval (CrI): 24%, 80%) of suspected cases represented true V. cholerae infections. After adjusting for test performance and study methodology, the odds of a suspected case having a true infection were 5.71 (odds ratio 95% CrI: 1.53, 15.43) times higher when surveillance was initiated in response to an outbreak than in non-outbreak settings. Variation across studies was high, and a limitation of our approach was that we were unable to explain all the heterogeneity with study-level attributes, including diagnostic test used, setting, and case definitions. Conclusions In this study, we found that burden estimates based on suspected cases alone may overestimate the incidence of medically attended cholera by 2-fold. However, accounting for cases missed by traditional clinical surveillance is key to unbiased cholera : burden estimates. Given the substantial variability in positivity between settings, extrapolations from suspected to confirmed cases, which is necessary to estimate cholera incidence rates without exhaustive testing, should be based on local data
    corecore