9 research outputs found
Xanthohumol Induces Growth Inhibition and Apoptosis in Ca Ski Human Cervical Cancer Cells
We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on ICvalues using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer
Flavokawain C Inhibits Cell Cycle and Promotes Apoptosis, Associated with Endoplasmic Reticulum Stress and Regulation of MAPKs and Akt Signaling Pathways in HCT 116 Human Colon Carcinoma Cells
10.1371/journal.pone.0148775PLoS ONE112e014877
(alpha R,4R,4aR,6aS,7R,8S,10R,11S)-Methyl alpha-acetoxy-4-(3-furanyl)-10-hydroxy-4a,7,9,9-tetramethyl-2,13-dioxo-1 ,4,4a,5,6,6a,7,8,9,10,11,12-dodecahydro-7,11-methano-2H-cycloocta[f] 2]benzopyran-8-acetate (6-O-acetylswietenolide) from the seeds of Swietenia macrophylla
The molecule of O-acetylswietenolide, C29H36O9, isolated from the seeds of Swietenia macrophylla, features four six-membered rings connected together in the shape of a bowl; one of the inner rings adopts a twisted chair conformation owing to the C=C double bond. The furyl substitutent is connected to an outer ring, and it points away from the bowl cavity. The hydroxy group is connected to a carbonyl O atom of an adjacent molecule by an O-H center dot center dot center dot O hydrogen bond, generating a chain running along the b axis
Chalepin: Isolated from Ruta angustifolia L. Pers induces mitochondrial mediated apoptosis in lung carcinoma cells
10.1186/s12906-016-1368-6BMC Complementary and Alternative Medicine16138
Chemical composition and antioxidant properties of extracts of fresh fruiting bodies of pleurotus sajor-caju (Fr.) singer
The chemical composition and in vitro antioxidant activity of aqueous butanol and ethyl acetate extracts of Pleurotus sajor-caju were investigated in this study. Twenty-two compounds comprising methyl esters, hydrocarbon fatty acids, ethyl esters, and sterols were identified in ethyl acetate extracts, while cinnamic acid, nicotinamide, benzeneacetamide, and 4-hydroxybenzaldyhde were identified in butanol extracts by gas chromatography-mass spectrometry and NMR analysis. The antioxidant activity was determined by a beta-carotene bleaching method, ferric reducing antioxidant power, trolox equivalent antioxidant capacity, and lipid peroxidation assays, while the total phenolic content in P. sajor-caju was assessed by Folin-Ciocalteau's method. The aqueous and butanol extracts exhibited the highest antioxidant activity, corresponding to the total phenolic content. The subfractions from the ethyl acetate extract (EP1, EP2, EP3, and EP4), however, showed moderate antioxidant activity. The regular consumption of P. sajor-caju as a part of our diet may render nutritional and nutraceuticals benefits for good health
Exploring the interaction between the antiallergic drug, tranilast and human serum albumin: Insights from calorimetric, spectroscopic and modeling studies
The interaction of tranilast (TRN), an antiallergic drug with the main drug transporter in human circulation, human serum albumin (HSA) was studied using isothermal titration calorimetry (ITC), fluorescence spectroscopy and in silico docking methods. ITC data revealed the binding constant and stoichiometry of binding as (3.21 ± 0.23) × 106 M-1 and 0.80 ± 0.08, respectively, at 25 °C. The values of the standard enthalpy change (ΔH°) and the standard entropy change (ΔS°) for the interaction were found as -25.2 ± 5.1 kJ mol-1 and 46.9 ± 5.4 J mol-1 K-1, respectively. Both thermodynamic data and modeling results suggested the involvement of hydrogen bonding, hydrophobic and van der Waals forces in the complex formation. Three-dimensional fluorescence data of TRN-HSA complex demonstrated significant changes in the microenvironment around the protein fluorophores upon drug binding. Competitive drug displacement results as well as modeling data concluded the preferred binding site of TRN as Sudlow's site I on HSA
Curcuma mangga-Mediated Synthesis of Gold Nanoparticles: Characterization, Stability, Cytotoxicity, and Blood Compatibility
The utilization of toxic chemicals as reducing and stabilizing agents in the preparation of gold nanoparticles (AuNPs) has increased in vivo toxicity and thus limited its application in clinical settings. Herein, we propose an alternative method of preparing highly stable AuNPs, where non-toxic Curcuma mangga (CM) extract was used as a single reducing and stabilizing agent to overcome the aforementioned constraints. The morphological images enunciated that the homogeneously dispersed AuNPs exhibited spherical morphology with an average particle diameter of 15.6 nm. Fourier Transform infrared (FTIR) and cyclic voltammetry analysis demonstrated that carbonyl groups of terpenoids in CM extract played an important role in the formation and stabilization of AuNPs. Green-synthesized AuNPs were found to have good stability in physiological media after 24 h of dispersion. The AuNPs were also cytocompatible with human colon fibroblast cell (CCD-18Co) and human lung fibroblast cell (MRC-5). Hemocompatibility tests revealed that the AuNPs were blood-compatible, with less than 10% of hemolysis without any aggregation of erythrocytes. The current study suggests potential in employing a CM-extract-based method in the preparation of AuNPs for anticancer diagnosis and therapy