5,232 research outputs found

    Identifying genes required for respiratory growth of fission yeast

    Get PDF
    We have used both auxotroph and prototroph versions of the latest deletion-mutant library to identify genes required for respiratory growth on solid glycerol medium in fission yeast. This data set complements and enhances our recent study on functional and regulatory aspects of energy metabolism by providing additional proteins that are involved in respiration. Most proteins identified in this mutant screen have not been implicated in respiration in budding yeast. We also provide a protocol to generate a prototrophic mutant library, and data on technical and biological reproducibility of colony-based high-throughput screens

    The New Flexible Economy: Shaping Regional and Local Institutions for Global Competition

    Get PDF
    Series: IIR-Discussion Paper

    3-Body Dynamics in a (1+1) Dimensional Relativistic Self-Gravitating System

    Full text link
    The results of our study of the motion of a three particle, self-gravitating system in general relativistic lineal gravity is presented for an arbitrary ratio of the particle masses. We derive a canonical expression for the Hamiltonian of the system and discuss the numerical solution of the resulting equations of motion. This solution is compared to the corresponding non-relativistic and post-Newtonian approximation solutions so that the dynamics of the fully relativistic system can be interpretted as a correction to the one-dimensional Newtonian self-gravitating system. We find that the structure of the phase space of each of these systems yields a large variety of interesting dynamics that can be divided into three distinct regions: annulus, pretzel, and chaotic; the first two being regions of quasi-periodicity while the latter is a region of chaos. By changing the relative masses of the three particles we find that the relative sizes of these three phase space regions changes and that this deformation can be interpreted physically in terms of the gravitational interactions of the particles. Furthermore, we find that many of the interesting characteristics found in the case where all of the particles share the same mass also appears in our more general study. We find that there are additional regions of chaos in the unequal mass system which are not present in the equal mass case. We compare these results to those found in similar systems.Comment: latex, 26 pages, 17 figures, high quality figures available upon request; typos and grammar correcte
    corecore