301 research outputs found

    Optical scalars in spherical spacetimes

    Get PDF
    Consider a spherically symmetric spacelike slice through a spherically symmetric spacetime. One can derive a universal bound for the optical scalars on any such slice. The only requirement is that the matter sources satisfy the dominant energy condition and that the slice be asymptotically flat and regular at the origin. This bound can be used to derive new conditions for the formation of apparent horizons. The bounds hold even when the matter has a distribution on a shell or blows up at the origin so as to give a conical singularity

    Mapping the Mayo-Portland adaptability inventory to the international classification of functioning, disability and health

    Get PDF
    Objective: To examine the contents of the Mayo-Portland Adaptability Inventory (MPAI-4) by mapping it to the International Classification of Functioning, Disability and Health (ICF). Methods: Each of the 30 scoreable items in the MPAI-4 was mapped to the most precise ICF categories. Results: All 30 items could be mapped to components and categories in the ICF. A total of 88 meaningful concepts were identified. There were, on average, 2.9 meaningful concepts per item, and 65% of all concepts could be mapped. Items in the Ability and Adjustment subscales mapped to categories in both the Body Functions and Activity/Participation components of the ICF, whereas all except 1 in the Participation subscale were to categories in the Activity/Participation component. The items could also be mapped to 34 (13%) of the 258 Environmental Factors in the ICF. Conclusion: This mapping provides better definition through more concrete examples (as listed in the ICF) of the types of body functions, activities, and participation indicators that are represented by the 30 scoreable MPAI-4 items. This may assist users throughout the world in understanding the intent of each item, and support further development and the possibility to report results in the form of an ICF categorical profile, making it universally interpretable

    Features of gravitational waves in higher dimensions

    Full text link
    There are several fundamental differences between four-dimensional and higher-dimensional gravitational waves, namely in the so called braneworld set-up. One of them is their asymptotic behavior within the Cauchy problem. This study is connected with the so called Hadamard problem, which aims at the question of Huygens principle validity. We investigate the effect of braneworld scenarios on the character of propagation of gravitational waves on FRW background.Comment: to appear in ERE09 proceeding

    Can Schwarzschildean gravitational fields suppress gravitational waves?

    Get PDF
    Gravitational waves in the linear approximation propagate in the Schwarzschild spacetime similarly as electromagnetic waves. A fraction of the radiation scatters off the curvature of the geometry. The energy of the backscattered part of an initially outgoing pulse of the quadrupole gravitational radiation is estimated by compact formulas depending on the initial energy, the Schwarzschild radius, and the location and width of the pulse. The backscatter becomes negligible in the short wavelength regime.Comment: 18 pages, Revtex. Added three references; a new comment in Sec. 7; several misprints corrected. To appear in the Phys. Rev.

    Global solutions of a free boundary problem for selfgravitating scalar fields

    Full text link
    The weak cosmic censorship hypothesis can be understood as a statement that there exists a global Cauchy evolution of a selfgravitating system outside an event horizon. The resulting Cauchy problem has a free null-like inner boundary. We study a selfgravitating spherically symmetric nonlinear scalar field. We show the global existence of a spacetime with a null inner boundary that initially is located outside the Schwarzschild radius or, more generally, outside an apparent horizon. The global existence of a patch of a spacetime that is exterior to an event horizon is obtained as a limiting case.Comment: 31 pages, revtex, to appear in the Classical and Quantum Gravit

    Event horizons and apparent horizons in spherically symmetric geometries

    Get PDF
    Spherical configurations that are very massive must be surrounded by apparent horizons. These in turn, when placed outside a collapsing body, must propagate outward with a velocity equal to the velocity of radially outgoing photons. That proves, within the framework of (1+3) formalism and without resorting to the Birkhoff theorem, that apparent horizons coincide with event horizons.Comment: 5 pages, plainte

    A new approach to electromagnetic wave tails on a curved spacetime

    Full text link
    We present an alternative method for constructing the exact and approximate solutions of electromagnetic wave equations whose source terms are arbitrary order multipoles on a curved spacetime. The developed method is based on the higher-order Green's functions for wave equations which are defined as distributions that satisfy wave equations with the corresponding order covariant derivatives of the Dirac delta function as the source terms. The constructed solution is applied to the study of various geometric effects on the generation and propagation of electromagnetic wave tails to first order in the Riemann tensor. Generally the received radiation tail occurs after a time delay which represents geometrical backscattering by the central gravitational source. It is shown that the truly nonlocal wave-propagation correction (the tail term) takes a universal form which is independent of multipole order. In a particular case, if the radiation pulse is generated by the source during a finite time interval, the tail term after the primary pulse is entirely determined by the energy-momentum vector of the gravitational field source: the form of the tail term is independent of the multipole structure of the gravitational source. We apply the results to a compact binary system and conclude that under certain conditions the tail energy can be a noticeable fraction of the primary pulse energy. We argue that the wave tails should be carefully considered in energy calculations of such systems.Comment: RevTex, 28 pages, 5 eps figures, http://www.tpu.ee/~tony/texdocs/, 4 changes made (pp. 2, 4, 22, 24), 2 references adde

    HD/H2 Molecular Clouds in the Early Universe: The Problem of Primordial Deuterium

    Full text link
    We have detected new HD absorption systems at high redshifts, z_abs=2.626 and z_abs=1.777, identified in the spectra of the quasars J0812+3208 and Q1331+170, respectively. Each of these systems consists of two subsystems. The HD column densities have been determined: log(N(HD),A)=15.70+/-0.07 for z_A=2.626443(2) and log(N(HD),B)=12.98+/-0.22 for z_B=2.626276(2) in the spectrum of J0812+3208 and log(N(HD),C)=14.83+/-0.15 for z_C=1.77637(2) and log(N(HD),D)=14.61+/-0.20 for z_D=1.77670(3) in the spectrum of Q1331+170. The measured HD/H2 ratio for three of these subsystems has been found to be considerably higher than its values typical of clouds in our Galaxy. We discuss the problem of determining the primordial deuterium abundance, which is most sensitive to the baryon density of the Universe \Omega_{b}. Using a well-known model for the chemistry of a molecular cloud, we have estimated the isotopic ratio D/H=HD/2H_2=(2.97+/-0.55)x10^{-5} and the corresponding baryon density \Omega_{b}h^2=0.0205^{+0.0025}_{-0.0020}. This value is in good agreement with \Omega_{b}h^2=0.0226^{+0.0006}_{-0.0006} obtained by analyzing the cosmic microwave background radiation anisotropy. However, in high-redshift clouds, under conditions of low metallicity and low dust content, hydrogen may be incompletely molecularized even in the case of self-shielding. In this situation, the HD/2H_2 ratio may not correspond to the actual D/H isotopic ratio. We have estimated the cloud molecularization dynamics and the influence of cosmological evolutionary effects on it

    Gravitational collapse of an isentropic perfect fluid with a linear equation of state

    Full text link
    We investigate here the gravitational collapse end states for a spherically symmetric perfect fluid with an equation of state p=kρp=k\rho. It is shown that given a regular initial data in terms of the density and pressure profiles at the initial epoch from which the collapse develops, the black hole or naked singularity outcomes depend on the choice of rest of the free functions available, such as the velocities of the collapsing shells, and the dynamical evolutions as allowed by Einstein equations. This clarifies the role that equation of state and initial data play towards determining the final fate of gravitational collapse.Comment: 7 Pages, Revtex4, To appear in Classical and Quantum Gravit
    corecore