269 research outputs found
Mobilization of the platinum group elements by low-temperature fluids: Implications for mineralization and the iridium controversy
Geochemical investigations on the widely dispersed Late Proterozoic Acraman impact ejecta horizon and its host marine shales in the Adelaide Geosyncline provide strong evidence for low-temperature mobilization of the platinum group elements (PGE), including Ir. The ejecta horizon was formed when the middle Proterozoic dacitic volcanics in the Gawler Ranges, central South Australia, were impacted by a very large (ca. 4 km) meteorite. The resulting structure, now represented by Lake Acraman, is Australia's largest meteorite impact structure. Debris from the impact was blasted for many hundreds of kilometers, some falling into the shallow sea of the Adelaide Geosyncline, some 300 km to the east of the impact site
An Adaptive User Interface in Healthcare
AbstractHealthcare is a broad subject with many different challenges, yet it is important and relatable to everyone. The aging Baby Boomer generation is an important healthcare issue today. In Canada, and many other developed nations, the number of citizens reaching the age of retirement and seniority is growing faster than the rate of citizens working and providing health related services. As people age they tend to require more frequent checkups and health services, ultimately putting a bigger resource drain on healthcare infrastructure. New advancements in Computer Science and Engineering are allowing the development of next generation applications with the purpose of providing healthcare services in a cost effective and efficient way. This paper proposes a multi-agent system for tracking and monitoring health data for patients. Furthermore, agents within the system use reinforcement learning techniques to build an adaptive user interface for each human user. The actions and behaviour of users are monitored and used to modify their respective user interface over time. To demonstrate the feasibility of the architecture, two scenarios are provided. We conclude with several possible future directions for this research
Dynamic Healthcare Interface for Patients
AbstractCanadian healthcare is a fundamental part of society. Challenges such as the aging baby boomer generation require the healthcare industry to meet higher demands while using fewer resources. Computer systems designed to record and report physical health properties of an individual personcan be used in part to accomplish this task. In this paper, we present the architecture of a hypothetical multi-agent system designed to provide healthcare information about specific patients through continuous monitoring. The resulting data from the system is accessible by the patient to whom it belongs as well as his or her healthcare professional. Furthermore, the proposed system utilizes an adaptive user interface for the purpose of improving the overall experience for users with poor vision or motor skills. Specifically, we focus on the implementation of several of the key components involved in the adaptive user interface: learning component and the user model. To demonstrate the feasibility of the implementation two scenarios are provided. We conclude with several possible future directions for this research
Composición elemental de otolitos revela áreas de desove separadas de la anchoveta, Engraulis ringens, en Chile central y en el norte de la Patagonia
The anchoveta (Engraulis ringens) is widely distributed throughout the Humboldt Current (4°30′-44°S). In recent years, its eggs and larvae have also been found inside fjords and channels of northern Patagonia, close to the southern limit of the central-south Chilean fishery zone. Currently, it is unclear whether these southern individuals constitute an independent subpopulation. This study analysed the elemental composition of otoliths from 102 specimens from central Chile and northern Patagonia using laser ablation inductively coupled plasma mass spectrometry. The results indicated that the elemental composition of the otolith cores (Mg, Pb, Zn, Ba) differed significantly between sites, revealing the existence of two discrete spawning zones, one in central Chile and one in northern Patagonia. However, the low significant differences of elemental signatures of otolith edges suggest that either individuals from both areas move between spawning areas and mix at certain periods of the year, or they represent pocket units that form part of a larger stock that moves along the coast.La anchoveta (Engraulis ringens), está ampliamente distribuida a lo largo de la Corriente de Humboldt (4°30′-44°S). En años recientes, sus huevos y larvas han sido encontradas dentro de fiordos y canales del norte de la Patagonia, cerca del lÃmite sur de la zona de pesca centro-sur chilena. Actualmente, no está claro si estos individuos del sur constituyen una subpoblación independiente. Este estudio analiza la composición elemental de otolitos de 102 especÃmenes de Chile central y Patagonia norte utilizando Ablación Láser con EspectrometrÃa de Masas con Plasma Acoplado Inductivamente. Los resultados indican que la composición elemental (Mg, Pb, Zn, Ba) de los centros de los otolitos difieren significativamente revelando la existencia de dos zonas discretas de desove, una en Chile central y la otra en la Patagonia norte. Sin embargo, las escasas diferencias en las señales de los elementos en los bordes de los otolitos sugieren que los individuos de ambas áreas pueden moverse entre zonas de desove y mezclarse en ciertos periodos del año, o bien, que ellos representan unidades pequeñas que forman parte de un stock mayor que se mueve a lo largo de la costa
Landscape of Epidermal Growth Factor Receptor Heterodimers in Brain Metastases
HER2+ breast cancer patients have an elevated risk of developing brain metastases (BM), despite adjuvant HER2-targeted therapy. The mechanisms underpinning this reduced intracranial efficacy are unclear. We optimised the in situ proximity ligation assay (PLA) for detection of the high-affinity neuregulin-1 receptor, HER2-HER3 (a key target of pertuzumab), in archival tissue samples and developed a pipeline for high throughput extraction of PLA data from fluorescent microscope image files. Applying this to a large BM sample cohort (n = 159) showed that BM from breast, ovarian, lung and kidney cancers have higher HER2-HER3 levels than other primary tumour types (melanoma, colorectal and prostate cancers). HER2 status, and tumour cell membrane expression of pHER2(Y1221/1222) and pHER3(Y1222) were positively, but not exclusively, associated with HER2-HER3 frequency. In an independent cohort (n = 78), BM had significantly higher HER2-HER3 levels than matching primary tumours (p = 0.0002). For patients who had two craniotomy procedures, HER2-HER3 dimer levels were lower in the consecutive lesion (n = 7; p = 0.006). We also investigated the effects of trastuzumab and pertuzumab on five different heterodimers in vitro: HER2-EGFR, HER2-HER4, HER2-HER3, HER3-HER4, HER3-EGFR. Treatment significantly altered the absolute frequencies of individual complexes in SKBr3 and/or MDA-MB-361 cells, but in the presence of neuregulin-1, the overall distribution was not markedly altered, with HER2-HER3 and HER2-HER4 remaining predominant. Together, these findings suggest that markers of HER2 and HER3 expression are not always indicative of dimerization, and that pertuzumab may be less effective at reducing HER2-HER3 dimerization in the context of excess neuregulin
Inhibition of beta-Catenin/CREB Binding Protein Signaling Attenuates House Dust Mite-Induced Goblet Cell Metaplasia in Mice
Excessive mucus production is a major feature of allergic asthma. Disruption of epithelial junctions by allergens such as house dust mite (HDM) results in the activation of β-catenin signaling, which has been reported to stimulate goblet cell differentiation. β-catenin interacts with various co-activators including CREB binding protein (CBP) and p300, thereby regulating the expression of genes involved in cell proliferation and differentiation, respectively. We specifically investigated the role of the β-catenin/CBP signaling pathway in goblet cell metaplasia in a HDM-induced allergic airway disease model in mice using ICG-001, a small molecule inhibitor that blocks the binding of CBP to β-catenin. Female 6- 8-week-old BALB/c mice were sensitized to HDM/saline on days 0, 1, and 2, followed by intranasal challenge with HDM/saline with or without subcutaneous ICG-001/vehicle treatment from days 14 to 17, and samples harvested 24 h after the last challenge/treatment. Differential inflammatory cells in bronchoalveolar lavage (BAL) fluid were enumerated. Alcian blue (AB)/Periodic acid–Schiff (PAS) staining was used to identify goblet cells/mucus production, and airway hyperresponsiveness (AHR) was assessed using invasive plethysmography. Exposure to HDM induced airway inflammation, goblet cell metaplasia and increased AHR, with increased airway resistance in response to the non-specific spasmogen methacholine. Inhibition of the β-catenin/CBP pathway using treatment with ICG-001 significantly attenuated the HDM-induced goblet cell metaplasia and infiltration of macrophages, but had no effect on eosinophils, neutrophils, lymphocytes or AHR. Increased β-catenin/CBP signaling may promote HDM-induced goblet cell metaplasia in mice
The First New Zealanders: Patterns of Diet and Mobility Revealed through Isotope Analysis
Direct evidence of the environmental impact of human colonization and subsequent human adaptational responses to new environments is extremely rare anywhere in the world. New Zealand was the last Polynesian island group to be settled by humans, who arrived around the end of the 13th century AD. Little is known about the nature of human adaptation and mobility during the initial phase of colonization. We report the results of the isotopic analysis (carbon, nitrogen and strontium) of the oldest prehistoric skeletons discovered in New Zealand to assess diet and migration patterns. The isotope data show that the culturally distinctive burials, Group 1, had similar diets and childhood origins, supporting the assertion that this group was distinct from Group 2/3 and may have been part of the initial colonizing population at the site. The Group 2/3 individuals displayed highly variable diets and likely lived in different regions of the country before their burial at Wairau Bar, supporting the archaeological evidence that people were highly mobile in New Zealand since the initial phase of human settlement.: University of Otago Research Grant (http://www.otago.ac.nz/research/otago004140.html); A grant-in-aid by the School of Medical Sciences, University
of Otago (http://osms.otago.ac.nz/); The Mason Foundation (http://research-hub.griffith.edu.au/display/fosc_MASONG); Royal Society of New Zealand Marsden
Fund (http://www.royalsociety.org.nz/programmes/funds/marsden/) grant number UOO0711. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript
Structural Controls on Shallow Cenozoic Fluid Flow in the Otago Schist, New Zealand
The Otago Schist in the South Island of New Zealand represents an exhumed Mesozoic accretionary prism. Two coastal areas (Akatore Creek and Bruce Rocks) south of Dunedin preserve structural and geochemical evidence for the development of postmetamorphic hydrothermal systems that involved widespread fluid-rock reaction at shallow crustal depths. The Jurassic to Triassic pumpellyite-actinolite (Akatore Creek) to upper greenschist facies (Bruce Rocks) metamorphic fabrics were crosscut by sets of regionally extensive Cretaceous exhumation joints. Many of the joints were subsequently reactivated to form networks of small-displacement (<metres) strike-slip faults containing cemented fault breccias and veins composed of hydrothermal calcite, siderite, and ankerite. Paleostress analysis performed on infrequent fault slickenlines indicates an overall strike-slip paleostress regime and a paleo-σ1 orientation (azimuth 094°) similar to the contemporary σ1 orientation in Otago and Canterbury (azimuth c. 110°-120°). High δ18O values in vein calcite (δ18OVPDB=21 to 28‰), together with the predominance of Type I calcite twins, suggest that vein formation occurred at low temperatures (<200°C) in the shallow crust and was associated with strongly channelized fluid flow along the joint and fault networks. Mass-balance calculations performed on samples from carbonate alteration zones show that significant mobilisation of elements occurred during fluid flow and fluid-rock reaction. Whole-rock and in situ carbonate 87Sr/86Sr data indicate varying degrees of interaction between the hydrothermal fluids and the host rock schists. Fluids were likely derived from the breakdown of metamorphic Ca-rich mineral phases with low 87Rb in the host schists (e.g., epidote or calcite), as well as more radiogenic components such as mica. Overall, the field and geochemical data suggest that shallow fluid flow in the field areas was channelized along foliation surfaces, exhumation joints, and networks of brittle faults, and that these structures controlled the distribution of fluid-rock reactions and hydrothermal veins. The brittle fault networks and associated hydrothermal systems are interpreted to have formed after the onset of Early Miocene compression in the South Island and may represent the manifestation of fracturing and fluid flow associated with reverse reactivation of regional-scale faults such as the nearby Akatore Fault
Comparisons of Aerosol Generation Across Different Musical Instruments and Loudness
Highlights•Aerosol number and mass concentrations measured during musical instrument playing.•A 1 dBA increase in sound pressure level yields ∼10% increase in number concentration.•Loudness of playing explains some but not all differences across instruments.•Musical instrument playing size distributions are consistent with those of breathing.•Simple songs sufficient to characterise aerosol emission during actual performance.AbstractRespiratory aerosols can serve as vectors for disease transmission, and aerosol emission is highly activity-dependent. COVID-19 severely impacted the performing arts due to concerns about disease spread by respiratory aerosols and droplets generated during singing and playing musical instruments. Aerosol generation from woodwind and brass performance is less understood compared to singing due to uncertainty about how the diverse range of musical instruments may impact respiratory aerosol concentrations and size distributions. Here, aerosol number and mass concentrations along with size distributions were measured for breathing, speaking, and playing four different woodwind and brass instruments by 23 professional instrumentalists. We find that a 1 dBA increase in sound pressure level corresponds to a ∼10% increase in aerosol number concentration. The aerosol size distribution is consistent with that of breathing. Differences in aerosol emission across musical instruments can be partly explained by the loudness of performance. Measuring aerosol generation from single notes or simple songs may be sufficient to characterise the aerosol emission range during actual performance, provided a range of loudnesses are accessed. These results provide insight into the factors contributing to aerosol emission during musical performance and facilitate risk assessments associated with infectious respiratory disease transmission in the performing arts
- …