1,205 research outputs found
Spin and Charge Luttinger-Liquid Parameters of the One-Dimensional Electron Gas
Low-energy properties of the homogeneous electron gas in one dimension are
completely described by the group velocities of its charge (plasmon) and spin
collective excitations. Because of the long range of the electron-electron
interaction, the plasmon velocity is dominated by an electrostatic contribution
and can be estimated accurately. In this Letter we report on Quantum Monte
Carlo simulations which demonstrate that the spin velocity is substantially
decreased by interactions in semiconductor quantum wire realizations of the
one-dimensional electron liquid.Comment: 13 pages, figures include
Critical speed estimated by statistically appropriate fitting procedures.
Intensity domains are recommended when prescribing exercise. The distinction between heavy and severe domains is made by the critical speed (CS), therefore requiring a mathematically accurate estimation of CS. The different model variants (distance versus time, running speed versus time, time versus running speed, and distance versus running speed) are mathematically equivalent. Nevertheless, error minimization along the correct axis is important to estimate CS and the distance that can be run above CS (d'). We hypothesized that comparing statistically appropriate fitting procedures, which minimize the error along the axis corresponding to the properly identified dependent variable, should provide similar estimations of CS and d' but that different estimations should be obtained when comparing statistically appropriate and inappropriate fitting procedure.
Sixteen male runners performed a maximal incremental aerobic test and four exhaustive runs at 90, 100, 110, and 120% of their peak speed on a treadmill. Several fitting procedures (a combination of a two-parameter model variant and regression analysis: weighted least square) were used to estimate CS and d'.
Systematic biases (P < 0.001) were observed between each pair of fitting procedures for CS and d', even when comparing two statistically appropriate fitting procedures, though negligible, thus corroborating the hypothesis.
The differences suggest that a statistically appropriate fitting procedure should be chosen beforehand by the researcher. This is also important for coaches that need to prescribe training sessions to their athletes based on exercise intensity, and their choice should be maintained over the running seasons
Routinely frozen biopsies of human skeletal muscle are suitable for morphological and immunocytochemical analyses at transmission electron microscopy
The aim of the present investigation was to evaluate whether routinely frozen biopsies of human skeletal muscle may be suitable for morphological and immunocytochemical analyses at transmission electron microscopy. The fixation/embedding protocols we successfully used for decades to process fresh mammalian tissues have been applied to frozen muscle biopsies stored for one to four years in liquid nitrogen. After 2.5% glutaraldehyde -2% paraformaldehyde - 1% OsO4 fixation and embedding in epoxy resin, the ultrastructural morphology of myofibres and satellite cells as well as of their organelles and inclusions proved to be well preserved. As expected, after 4% paraformaldehyde - 0.5% glutaraldehyde fixation and embedding in LR White resin, the morphology of membrane-bounded organelles was relatively poor, although myofibrillar and sarcomeric organization was still recognizable. On the contrary, the myonuclei were excellently preserved and, after conventional staining with uranyl acetate, showed an EDTA-like effect, i.e. the bleaching of condensed chromatin, which allows the visualization of RNP-containing structures. These samples proved to be suitable for immunocytochemical analyses of both cytoskeletal and nuclear components, whereas the poor mitochondrial preservation makes unreliable any in situ investigation on these organelles
Jastrow correlation factor for atoms, molecules, and solids
A form of Jastrow factor is introduced for use in quantum Monte Carlo
simulations of finite and periodic systems. Test data are presented for atoms,
molecules, and solids, including both all-electron and pseudopotential atoms.
We demonstrate that our Jastrow factor is able to retrieve a large fraction of
the correlation energy
Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence
Myotonic dystrophy type 2 (DM2) is an autosomal dominant disorder caused by the expansion of the tetranucleotidic repeat (CCTG)n in the first intron of the Zinc Finger Protein-9 gene. In DM2 tissues, the expanded mutant transcripts accumulate in nuclear focal aggregates where splicing factors are sequestered, thus affecting mRNA processing. Interestingly, the ultrastructural alterations in the splicing machinery observed in the myonuclei of DM2 skeletal muscles are reminiscent of the nuclear changes occurring in age-related muscle atrophy. Here, we investigated in vitro structural and functional features of satellite cell-derived myoblasts from biceps brachii, in the attempt to investigate cell senescence indices in DM2 patients by ultrastructural cytochemistry. We observed that in satellite cell-derived DM2 myoblasts, cell-senescence alterations such as cytoplasmic vacuolization, reduction of the proteosynthetic apparatus, accumulation of heterochromatin and impairment of the pre-mRNA maturation pathways occur earlier than in myoblasts from healthy patients. These results, together with preliminary in vitro observations on the early onset of defective structural features in DM2 myoblast derived-myotubes, suggest that the regeneration capability of DM2 satellite cells may be impaired, thus contributing to the muscular dystrophy in DM2 patients
Variational quantum Monte Carlo calculations for solid surfaces
Quantum Monte Carlo methods have proven to predict atomic and bulk properties
of light and non-light elements with high accuracy. Here we report on the first
variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking
the boundary condition for the simulation from a finite layer geometry, the
Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved
form and evaluated with a two-dimensional Ewald summation technique. The exact
cancellation of all Jellium contributions to the Hamiltonian is ensured. The
many-body trial wave function consists of a Slater determinant with
parameterized localized orbitals and a Jastrow factor with a common two-body
term plus a new confinement term representing further variational freedom to
take into account the existence of the surface. We present results for the
ideal (110) surface of Galliumarsenide for different system sizes. With the
optimized trial wave function, we determine some properties related to a solid
surface to illustrate that VMC techniques provide standard results under full
inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style,
submitted to Phys. Rev.
Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS) filled PS nanocomposites
The polyhedral oligomeric silsesquioxane (POSS) additivated polystyrene (PS) based nanocomposites were prepared by melt processing and the structure-properties relationships of the POSS-PS systems were compared to those of the neat PS. In order to investigate the effect of these structural parameters on the final properties of the polymer nanocomposites, five different kinds of POSS samples were used, in particular, POSS with different inorganic cage and with different organic pendent groups. The rheological investigation suggests clearly that the POSS acts as a plasticizer and that the processability of the PS was positively modified. The affinity between the POSS samples and the PS matrix was estimated by the calculated theoretical solubility parameters, considering the Hoy’s method and by morphology analysis. Minor difference between the solubility parameter of POSS and the matrix means better compatibility and no aggregation tendency. Furthermore, the POSS loading leads to a decrease of the rigidity, of the glass transition temperature and of the damping factor of the nanocomposite systems. The loading of different POSS molecules with open cage leads to a more pronounced effect on all the investigated properties that the loading of the POSS molecules with closed cage. Moreover, the melt properties are significantly influenced by the type of inorganic framework, by the type of the pendent organic groups and by the interaction between the POSS organic groups and the host matrix, while, the solid state properties appears to be influenced more by the kind of cage
The left cradling bias: an evolutionary facilitator of social cognition?
A robust left side cradling bias (LCB) in humans is argued to reflect an evolutionarily old left visual field bias and right hemisphere dominance for processing social stimuli. A left visual field bias for face processing, invoked via the LCB, is known to reflect a human population-level right cerebral hemisphere specialization for processing social stimuli. We explored the relationship between cradling side biases, hand dominance and socio-communicative abilities. Four and five year old typically-developing children (N = 98) participated in a battery of manual motor tasks interspersed by cradling trials comprising a(n): infant human doll, infant primate doll, proto-face pillow and no-face pillow. Mean social and communication ability scores were obtained via a survey completed by each child’s key teacher. We found a population-level LCB for holding an infant human doll that was not influenced by hand dominance, sex, age or experience of having a younger sibling. Children demonstrating a LCB, did however, obtain a significantly higher mean social ability score compared with their right side cradling counterparts. Like the infant human doll, the proto-face pillow’s schematic face symbol was sufficient to elicit a population-level LCB. By contrast, the infant primate doll elicited a population-level right side cradling bias, influenced by both hand dominance and sex. The findings suggest that the LCB is present and visible early in development and is likely therefore, to represent evolutionarily old domain-specific organisation and function of the right cerebral hemisphere. Additionally, results suggest that a LCB requires minimal triggering but can be reversed in some situations, possibly in response to species-type or levels of novelty or stress as perceived by the viewer. Patterns of behavioral biases within the context of social stimuli and their associations with cognitive ability are important for understanding how socio-communication abilities emerge in developing children
- …