99 research outputs found
Quantum Geo-Encryption
In this work we introduce the concept of quantum geo-encryption - a protocol
that invokes direct quantum encryption of messages coupled to quantum location
monitoring of the intended receiver. By obfuscating the quantum information
required by both the decrypting process and the location verification process,
a communication channel is created in which the encrypted data can only be
decrypted at a specific geographic locale. Classical wireless communications
can be invoked to unlock the quantum encryption process thereby allowing for
any deployment scenario regardless of the channel conditions. Quantum
geo-encryption can also be used to realize quantum-computing instructions that
can only be implemented at a specific location, and allow for a specified
geographical data-route through a distributed network. Here we consider the
operational aspects of quantum geo-encryption in generic Rician channels,
demonstrating that the likelihood of a successful spoofing attack approaches
zero as the adversary moves away from the allowed decrypting location. The work
introduced here resolves a long-standing quest to directly deliver information
which can only be decrypted at a given location free of assumptions on the
physical security of a receiver.Comment: 3 Figure
A Note on the Information-Theoretic-(in)Security of Fading Generated Secret Keys
In this work we explore the security of secret keys generated via the
electromagnetic reciprocity of the wireless fading channel. Identifying a new
sophisticated colluding attack, we explore the information-theoretic-security
for such keys in the presence of an all-powerful adversary constrained only by
the laws of quantum mechanics. Specifically, we calculate the reduction in the
conditional mutual information between transmitter and receiver that can occur
when an adversary with unlimited computational and communication resources
places directional antenna interceptors at chosen locations. Such locations, in
principal, can be arbitrarily far from the intended receiver yet still
influence the secret key rate.Comment: 4 pages, 2 figures. This work has been submitted to the IEEE for
possible publication. Copyright may be transferred without notice, after
which this version may no longer be accessibl
The Quantum Car
I explore the use of quantum information as a security enabler for the future
driverless vehicle. Specifically, I investigate the role combined classical and
quantum information can have on the most important characteristic of the
driverless vehicle paradigm - the vehicle location. By using
information-theoretic verification frameworks, coupled with emerging
quantum-based location-verification procedures, I show how vehicle positions
can be authenticated with a probability of error simply not attainable in
classical-only networks. I also discuss how other quantum applications can be
seamlessly encapsulated within the same vehicular communication infrastructure
required for location verification. The two technology enablers required for
the driverless quantum vehicle are an increase in current quantum memory
timescales (likely) and wide-scale deployment of classical vehicular
communication infrastructure (underway). I argue the enhanced safety features
delivered by the `Quantum Car' mean its eventual deployment is inevitable.Comment: 4 pages, 1 figur
Gaussian Entanglement Distribution via Satellite
In this work we analyse three quantum communication schemes for the
generation of Gaussian entanglement between two ground stations. Communication
occurs via a satellite over two independent atmospheric fading channels
dominated by turbulence-induced beam wander. In our first scheme the
engineering complexity remains largely on the ground transceivers, with the
satellite acting simply as a reflector. Although the channel state information
of the two atmospheric channels remains unknown in this scheme, the Gaussian
entanglement generation between the ground stations can still be determined. On
the ground, distillation and Gaussification procedures can be applied, leading
to a refined Gaussian entanglement generation rate between the ground stations.
We compare the rates produced by this first scheme with two competing schemes
in which quantum complexity is added to the satellite, thereby illustrating the
trade-off between space-based engineering complexity and the rate of
ground-station entanglement generation.Comment: Closer to published version (to appear in Phys. Rev. A) 13 pages, 6
figure
Quantum Entanglement Distribution in Next-Generation Wireless Communication Systems
In this work we analyze the distribution of quantum entanglement over
communication channels in the millimeter-wave regime. The motivation for such a
study is the possibility for next-generation wireless networks (beyond 5G) to
accommodate such a distribution directly - without the need to integrate
additional optical communication hardware into the transceivers. Future
wireless communication systems are bound to require some level of quantum
communications capability. We find that direct quantum-entanglement
distribution in the millimeter-wave regime is indeed possible, but that its
implementation will be very demanding from both a system-design perspective and
a channel-requirement perspective.Comment: 6 pages, 4 figure
CV-QKD with Gaussian and non-Gaussian Entangled States over Satellite-based Channels
In this work we investigate the effectiveness of continuous-variable (CV)
entangled states, transferred through high-loss atmospheric channels, as a
means of viable quantum key distribution (QKD) between terrestrial stations and
low-Earth orbit (LEO) satellites. In particular, we investigate the role played
by the Gaussian CV states as compared to non-Gaussian states. We find that
beam-wandering induced atmospheric losses lead to QKD performance levels that
are in general quite different from those found in fixed-attenuation channels.
For example, circumstances can be found where no QKD is viable at some fixed
loss in fiber but is viable at the same mean loss in fading channels. We also
find that, in some circumstances, the QKD relative performance of Gaussian and
non-Gaussian states can in atmospheric channels be the reverse of that found in
fixed-attenuation channels. These findings show that the nature of the
atmospheric channel can have a large impact on the QKD performance. Our results
should prove useful for emerging global quantum communications that use LEO
satellites as communication relays.Comment: 7 pages, 5 figure
Location-Based Beamforming for Rician Wiretap Channels
We propose a location-based beamforming scheme for wiretap channels, where a
source communicates with a legitimate receiver in the presence of an
eavesdropper. We assume that the source and the eavesdropper are equipped with
multiple antennas, while the legitimate receiver is equipped with a single
antenna. We also assume that all channels are in a Rician fading environment,
the channel state information from the legitimate receiver is perfectly known
at the source, and that the only information on the eavesdropper available at
the source is her location. We first describe how the beamforming vector that
minimizes the secrecy outage probability of the system is obtained,
illustrating its dependence on the eavesdropper's location. We then derive an
easy-to-compute expression for the secrecy outage probability when our proposed
location-based beamforming is adopted. Finally, we investigate the impact
location uncertainty has on the secrecy outage probability, showing how our
proposed solution can still allow for secrecy even when the source has limited
information on the eavesdropper's location.Comment: 6 pages, 4 figure
Multimode Entangled States in the Lossy Channel
In this work we analyse the structure of highly-entangled multimode squeezed
states, such as those generated by broadband pulses undergoing type-II
parametric down-conversion (PDC). Such down-conversion has previously been
touted as a natural and efficient means of cluster-state generation, and
therefore a viable future pathway to quantum computation. We first detail how
broadband PDC processes lead directly to a series of orthogonal supermodes that
are linear combinations of the original frequency modes. We then calculate the
total squeezing of the multimode entangled states when they are assumed to be
measured by an ideal homodyne detection in which all supermodes of the states
are detected by an optimally shaped local oscillator (LO) pulse. For
comparison, squeezing of the same entangled states are calculated when measured
by a lower-complexity homodyne detection scheme that exploits an unshaped LO
pulse. Such calculations illustrate the cost, in the context of squeezing, of
moving from higher complexity (harder to implement) homodyne detection to
lower-complexity (easier-to-implement) homodyne detection. Finally, by studying
the degradation in squeezing of the supermodes under photonic loss, multimode
entangled state evolution through an attenuation channel is determined. The
results reported here push us towards a fuller understanding of the real-world
transfer of cluster-states when they take the form of highly-entangled
multimode states in frequency space.Comment: Accepted for publication: IEEE VTC International Workshop on Quantum
Communications for Future Networks (QCFN), Sydney, Australia, June 201
Location-Based Beamforming and Physical Layer Security in Rician Wiretap Channels
We propose a new location-based beamforming (LBB) scheme for wiretap
channels, where a multi-antenna source communicates with a single-antenna
legitimate receiver in the presence of a multi-antenna eavesdropper. We assume
that all channels are in a Rician fading environment, the channel state
information from the legitimate receiver is perfectly known at the source, and
that the only information on the eavesdropper available at the source is her
location. We first describe how the optimal beamforming vector that minimizes
the secrecy outage probability of the system is obtained, illustrating its
dependence on the eavesdropper's location. We then derive an easy-to-compute
expression for the secrecy outage probability when our proposed LBB scheme is
adopted. We also consider the positive impact a friendly jammer can have on our
beamforming solution, showing how the path to optimality remains the same.
Finally, we investigate the impact of location uncertainty on the secrecy
outage probability, showing how our solution can still allow for secrecy even
when the source only has a noisy estimate of the eavesdropper's location. Our
work demonstrates how a multi-antenna array, operating in the most general
channel conditions and most likely system set-up, can be configured rapidly in
the field so as to deliver an optimal physical layer security solution.Comment: 11 pages, 8 figures. Accepted for publication in IEEE Transactions on
Wireless Communications. arXiv admin note: substantial text overlap with
arXiv:1510.0856
- …