2 research outputs found

    Whole genome sequencing analysis of Mycobacterium tuberculosis reveals circulating strain types and drug-resistance mutations in the Philippines.

    Get PDF
    The Philippines is a high-incidence country for tuberculosis, with the increasing prevalence of multi- (MDR-TB) and extensively-drug (XDR-TB) resistant Mycobacterium tuberculosis strains posing difficulties to disease control. Understanding the genetic diversity of circulating strains can provide insights into underlying drug resistance mutations and transmission dynamics, thereby assisting the design of diagnostic tools, including those using next generation sequencing (NGS) platforms. By analysing genome sequencing data of 732 isolates from Philippines drug-resistance survey collections spanning from 2011 to 2019, we found that the majority belonged to lineages L1 (531/732; 72.5%) and L4 (European-American; n = 174; 23.8%), with the Manila strain (L1.2.1.2.1) being the most prominent (475/531). Approximately two-thirds of isolates were found to be at least MDR-TB (483/732; 66.0%), and potential XDR-TB genotypic resistance was observed (3/732; 0.4%), highlighting an emerging problem in the country. Genotypic resistance was highly concordant with laboratory drug susceptibility testing. By finding isolates with (near-)identical genomic variation, five major clusters containing a total of 114 isolates were identified: all containing either L1 or L4 isolates with at least MDR-TB resistance and spanning multiple years of collection. Closer inspection of clusters revealed transmission in prisons, some involving isolates with XDR-TB, and mutations linked to third-line drug bedaquiline. We have also identified previously unreported mutations linked to resistance for isoniazid, rifampicin, ethambutol, and fluoroquinolones. Overall, this study provides important insights into the genetic diversity, transmission and circulating drug resistance mutations of M. tuberculosis in the Philippines, thereby informing clinical and surveillance decision-making, which is increasingly using NGS platforms

    Molecular characterization of drug-resistant Mycobacterium tuberculosis among Filipino patients derived from the national tuberculosis prevalence survey Philippines 2016.

    Get PDF
    Tuberculosis, caused by Mycobacterium tuberculosis, remains a high burden disease and leading cause of mortality in the Philippines. Understanding the genetic diversity of M. tuberculosis strains in the population, including those that are multi-drug resistant (MDR), will aid in formulating strategies for effective TB control and prevention. By whole genome sequencing of M. tuberculosis isolates (n = 100) from patients of the Philippine 2016 National Tuberculosis Prevalence Survey, we sought to provide a baseline assessment of the genotypic and phylogenetic characteristics of the isolates. The majority (96/100) of the isolates were EAI2-Manila strain-type (lineage 1), with one Lineage 2 (Beijing), one Lineage 3 (CAS1), and two Lineage 4 (LAM9) strains. The EAI2-Manila clade was not significantly associated with patient's phenotypic and in silico drug resistance profile. Five (5/6) MDR-TB isolates predicted by in silico profiling were concordant with phenotypic drug resistance profile. Twenty-one mutations were identified in nine drug resistance-related genes, all of which have been reported in previous studies. Overall, the results from this study contribute to the growing data on the molecular characteristics of Philippine M. tuberculosis isolates, which can help in developing tools for rapid diagnosis of TB in the country, and thereby reducing the high burden of disease
    corecore