13 research outputs found

    Fabrication and characterization of high entropy pyrochlore ceramics

    Get PDF
    High-entropy rare-earth (RE) zirconates with pyrochlore structure were successfully fabricated by pressureless and spark plasma sintering. RE2Zr2O7 compound with nominal composition (La0.2Y0.2Gd0.2Nd0.2Sm0.2)Zr2O7 was prepared by simple glycine nitrate procedure (GNP). GNP process yielded powders with low crystallinity and after subsequent calcination, well crystalline ceramics were formed. During calcination defective fluorite (F-RE2Zr2O7) and crystal pyrochlore (Py-RE2Zr2O7) structures coexist. Formation of pure crystalline pyrochlore occurs after sintering at 1450°C. High-density ceramics, free of any additives, were obtained after powders compaction and pressureless (PS), as well as field assisted sintering technique (FAST) at 1450°C. Theoretical investigations of the high-entropy RE2Zr2O7 pyrochlore systems were performed. Unit cell parameter of the obtained Py-RE2Zr2O7 is 10.5892(2)Å and 10.5999(2)Å for PS and FAST sintering, respectively, which is in good agreement with the results of Density Functional Theory (DFT) calculations. The thermal diffusivity of sintered samples at room temperature was ∼0.7mm2/s for both sintering methods.ResumenSe fabricaron con éxito, mediante sinterización por plasma sin presión y por chispa, los circonatos de tierras raras (RE) de alta entropía con estructura de pirocloro. El compuesto RE2Zr2O7 con composición nominal (La0,2Y0,2Gd0,2Nd0,2Sm0,2)Zr2O7 se preparó mediante un procedimiento simple de nitrato de glicina (GNP). El proceso GNP produjo polvos con baja cristalinidad y después de la posterior calcinación, se formaron cerámicas bien cristalinas. Durante la calcinación coexisten estructuras defectuosas de fluorita (F-RE2Zr2O7) y pirocloro cristalino (Py-RE2Zr2O7). La formación de pirocloro cristalino puro se produce después de la sinterización a 1.450°C. Después de la compactación de polvos y sin presión (PS), así como por la técnica de sinterización asistida en campo (FAST) a 1.450 oC, se obtuvieron cerámicas de alta densidad, libres de aditivos. Se realizaron investigaciones teóricas de los sistemas de pirocloro RE2Zr2O7 de alta entropía. El parámetro de celda unitaria del Py-RE2Zr2O7 obtenido es 105.892(2) Å y 105.999(2) Å para la sinterización PS y FAST, respectivamente, lo que está de acuerdo con los resultados de los cálculos de la teoría funcional de la densidad (DFT). La difusividad térmica de las muestras sinterizadas a temperatura ambiente fue de ∼ 0,7 mm2/s para ambos métodos de sinterización

    Preparation, Structure, and Properties of PVA–AgNPs Nanocomposites

    No full text
    The aim of the work was to prepare a polymer matrix composite doped by silver nanoparticles and analyze the influence of silver nanoparticles (AgNPs) on polymers’ optical and toxic properties. Two different colloids of AgNPs were prepared by chemical reduction. The first colloid, a blue one, contains stable triangular nanoparticles (the mean size of the nanoparticles was ~75 nm). UV–vis spectrophotometry showed that the second colloid, a yellow colloid, was very unstable. Originally formed spherical particles (~11 nm in diameter) after 25 days changed into a mix of differently shaped nanoparticles (irregular, triangular, rod-like, spherical, decahedrons, etc.), and the dichroic effect was observed. Pre-prepared AgNPs were added into the PVA (poly(vinyl alcohol)) polymer matrix and PVA–AgNPs composites (poly(vinyl alcohol) doped by Ag nanoparticles) were prepared. PVA–AgNPs thin layers (by a spin-coating technique) and fibers (by electrospinning and dip-coating techniques) were prepared. TEM and SEM techniques were used to analyze the prepared composites. It was found that the addition of AgNPs caused a change in the optical and antibiofilm properties of the non-toxic and colorless polymer. The PVA–AgNPs composites not only showed a change in color but a dichroic effect was also observed on the thin layer, and a good antibiofilm effect was also observed

    Structural Evolution in Wet Mechanically Alloyed Co-Fe-(Ta,W)-B Alloys

    No full text
    In the present study, the effect of wet mechanical alloying (MA) on the glass-forming ability (GFA) of Co43Fe20X5.5B31.5 (X = Ta, W) alloys was studied. The structural evolution during MA was investigated using high-energy X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy and magnetic measurements. Pair distribution function and extended X-ray absorption fine structure spectroscopy were used to characterize local atomic structure at various stages of MA. Besides structural changes, the magnetic properties of both compositions were investigated employing a vibrating sample magnetometer and thermomagnetic measurements. It was shown that using hexane as a process control agent during wet MA resulted in the formation of fully amorphous Co-Fe-Ta-B powder material at a shorter milling time (100 h) as compared to dry MA. It has also been shown that substituting Ta with W effectively suppresses GFA. After 100 h of MA of Co-Fe-W-B mixture, a nanocomposite material consisting of amorphous and nanocrystalline bcc-W phase was synthesized

    Densification of boron carbide under high pressure

    No full text
    Additive-free boron carbide (B4C) powders were densified at 4 GPa using the high-pressure “anvil-type with hollows” apparatus in the temperature range of 1500–1900 °C. The boron carbide ceramics prepared by this method showed a hardness of 37 GPa, which is very close to the hardness of mono-crystal boron carbide. The study showed that the boron carbide grains are uniformly sized without observed grain growth in the sintered materials. Obtained results revealed that high-pressure sintering can be a very effective low-temperature densification method for the obtainment of additive-free B4C ceramics. Moreover, the process can be scaled-up for the production of large-size composites required in various cutting tools and other extreme condition applications

    Mechanochemical Synthesis of Nickel Mono- and Diselenide: Characterization and Electrical and Optical Properties

    No full text
    Nickel mono- (NiSe) and diselenide (NiSe2) were produced from stoichiometric mixtures of powdered Ni and Se precursors by the one-step, undemanding mechanochemical reactions. The process was carried out by high-energy milling for 30 and 120 min in a planetary ball mill. The kinetics of the reactions were documented, and the products were studied in terms of their crystal structure, morphology, electrical, and optical properties. X-ray powder diffraction confirmed that NiSe has hexagonal and NiSe2 cubic crystal structure with an average crystallite size of 10.5 nm for NiSe and 13.3 nm for NiSe2. Their physical properties were characterized by the specific surface area measurements and particle size distribution analysis. Transmission electron microscopy showed that the prepared materials contain nanoparticles of irregular shape, which are agglomerated into clusters of about 1–2 μm in diameter. The first original values of electrical conductivity, resistivity, and sheet resistance of nickel selenides synthesized by milling were measured. The obtained bandgap energy values determined using UV–Vis spectroscopy confirmed their potential use in photovoltaics. Photoluminescence spectroscopy revealed weak luminescence activity of the materials. Such synthesis of nickel selenides can easily be carried out on a large scale by milling in an industrial mill, as was verified earlier for copper selenide synthesis

    Development and characterisation of a Y2Ti2O7-based glass-ceramic as a potential oxidation protective coating for titanium suboxide (TiOx)

    No full text
    © 2021 Elsevier Ltd and Techna Group S.r.l. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.ceramint.2021.03.316A silica-based glass-ceramic, with Y2Ti2O7 as the major crystalline phase, is designed, characterised and tested as an oxidation-protective coating for a titanium suboxide (TiOx) thermoelectric material at temperatures of up to 600 °C. The optimised sinter-crystallisation treatment temperatures are found to be 1300 °C and 855 °C for a duration of 30 min, and this treatment leads to a glass-ceramic with cubic Y2Ti2O7 and CaAl2Si2O8 as crystalline phases. An increase of ~270 °C in the dilatometric softening temperature is observed after devitrification of the parent glass, thus further extending its working temperature range. Excellent adhesion of the glass-ceramic coating to the thermoelectric material is maintained after exposure to a temperature of 600 °C for 120 h under oxidising conditions, thus confirming the effectiveness of the T1 glass-ceramic in protecting the TiOx material.Peer reviewe

    Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering

    No full text
    Additive-free boron carbide (B4C) – silicon carbide (SiC) ceramic composites with different B4C and β-SiC powders ratio were densified using the high-pressure “anvil-type with hollows” apparatus at 1500 °C under a pressure of 4 GPa for 60 s in air. The effect of starting powders ratio on the composites sintering behavior, relative density, microstructural development, and thermomechanical properties was studied. The sintered samples hardness was found to be in the range from 24 to 31 GPa. The thermal conductivity measurements, conducted in the temperature range from room temperature to 1000 °C, showed that the thermal diffusivity of sintered samples was between 6 and 9.5 mm2/s whereas the thermal conductivity was in the range from 16 to 28 W/(m K). The results of this study show that the high-pressure sintering can be a very effective low-temperature densification method for the obtainment of additive-free B4C - β-SiC ceramic composites. © 2021 Elsevier Lt

    Transformation of Amorphous Terbium Metal–Organic Framework on Terbium Oxide TbO<sub>x</sub>(111) Thin Film on Pt(111) Substrate: Structure of Tb<sub>x</sub>O<sub>y</sub> Film

    No full text
    The present study is focused on the synthesis and structural properties of amorphous terbium metal–organic framework thin film (TbMOF-TF) and its transformation to terbium oxide by pyrolysis at 450 °C in the air. The crystalline (cTbMOF) and amorphous (aTbMOF) films were prepared by solvothermal synthesis using different amounts (0.4 and 0.7 mmol) of the modulator (sodium acetate), respectively. The powders were characterized by differential scanning calorimetry (DSC), thermogravimetry (TG), Fourier transform infrared (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM). The varied chemical composition of the surface of TbMOFs and TbxOy was investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that aTbMOF had been fully transformed to a Tb4O7 phase with a cubic crystal structure at 450 °C. The amorphous aTbMOF-TF film was prepared by dropping a colloidal solution of amorphous precursor nanocrystals on the SiO2/Si substrates covered with Pt as an interlayer. XPS confirmed the presence of Tb in two states, Tb3+ and Tb4+. The amorphous film has a rough, porous microstructure and is composed of large clusters of worm-like particles, while terbium oxide film consists of fine crystallites of cubic fluorite cF-TbOx, c-Tb4O7, and c-Tb2O3 phases. The surface topography was investigated by a combination of confocal (CM) and atomic force microscopy (AFM). The amorphous film is porous and rough, which is contrast to the crystalline terbium oxide film
    corecore