882 research outputs found

    Manifestation of superfluidity in an evolving Bose-condensed gas

    Full text link
    We study the generation of excitations due to an ''impurity''(static perturbation) placed into an oscillating Bose-condensed gas in the time-dependent trapping field. It is shown that there are two regions for the position of the local perturbation. In the first region the condensate flows around the ''impurity'' without generation of excitations demonstrating superfluid properties. In the second region the creation of excitations occurs, at least within a limited time interval, revealing destruction of superfluidity. The phenomenon can be studied by measuring the damping of condensate oscillations at different positions of the ''impurity''

    Ab initio calculations of the physical properties of transition metal carbides and nitrides and possible routes to high-Tc

    Full text link
    Ab initio linear-response calculations are reported of the phonon spectra and the electron-phonon interaction for several transition metal carbides and nitrides in a NaCl-type structure. For NbC, the kinetic, optical, and superconducting properties are calculated in detail at various pressures and the normal-pressure results are found to well agree with the experiment. Factors accounting for the relatively low critical temperatures Tc in transition metal compounds with light elements are considered and the possible ways of increasing Tc are discussed.Comment: 19 pages, 7 figure

    Field-Dependent Critical Current in Type-II Superconducting Strips: Combined Effect of Bulk Pinning and Geometrical Edge Barrier

    Full text link
    Recent theoretical and experimental research on low-bulk-pinning superconducting strips has revealed striking dome-like magnetic-field distributions due to geometrical edge barriers. The observed magnetic-flux profiles differ strongly from those in strips in which bulk pinning is dominant. In this paper we theoretically describe the current and field distributions of a superconducting strip under the combined influence of both a geometrical edge barrier and bulk pinning at the strip's critical current Ic, where a longitudinal voltage first appears. We calculate Ic and find its dependence upon a perpendicular applied magnetic field Ha. The behavior is governed by a parameter p, defined as the ratio of the bulk-pinning critical current Ip to the geometrical-barrier critical current Is0. We find that when p > 2/pi and Ip is field-independent, Ic vs Ha exhibits a plateau for small Ha, followed by the dependence Ic-Ip ~ 1/Ha in higher magnetic fields.Comment: 4 pages, 2 figures, Fig. 1 revised, submitted to Phys. Rev.

    Anomalous Hall effect for the phonon heat conductivity in paramagnetic dielectric

    Full text link
    The theory of anomalous Hall effect for the heat transfer in a paramagnetic dielectric, discovered experimentally in [1], is developed. The appearance of the phonon heat flux normal to both the temperature gradient and the magnetic field is connected with the interaction of magnetic ions with the crystal field oscillations. In crystals with an arbitrary phonon spectrum this interaction creates the elliptical polarization of phonons. The kinetics related to phonon scattering induced by the spin-phonon interaction determines an origin of the off-diagonal phonon density matrix. The combination of the both factors is decisive for the phenomenon under consideration.Comment: 5 pages; typos and abstract correcte
    • …
    corecore