3 research outputs found

    Investigation of the Densification Behavior of Alumina during Spark Plasma Sintering

    No full text
    The article presents the results of the investigation of the mechanism of the densification behavior of alumina-based ceramics during spark plasma sintering. The role of the heating rates and additives were investigated. The first (initial) stage of sintering was investigated by the Young–Cutler model. The second (intermediate) stage of sintering was investigated as a process of plastic deformation of a porous body under external pressure. It was shown that, at the initial stage, the formation of necks between the particles is controlled by grain boundary diffusion (the activation energy is Qb ≈ 20 kTm). At this stage, accommodation of the shape of the alumina particles is also occurring (an increase in the packing density). The accommodation process facilitates the shrinkage of the powder, which is reflected in a decrease in the effective activation energy of shrinkage at low heating rates (10 °C/min) to Qb ≈ 17 kTm. At heating rates exceeding 10 °C/min, the intensity of the processes of accommodation of alumina particles turns out to be much slower than the existing diffusion processes of growth of necks between the alumina particles. It was shown that the grain boundary sliding mechanism that occurs in the second stage of sintering can play a decisive role under conditions of spark plasma sintering with a high heating rate. The found value of the activation energy at the second stage of sintering is also close to the activation energy of grain–boundary diffusion of alumina (Qb ≈ 20 kTm). The influences of the second phase particles of MgO, TiO2, and ZrO2 on densification behavior of alumina-based ceramics were investigated. Since at the first stage of sintering the densification relates with the formation of necks between the particles of alumina, the additives (0.5% vol) have no noticeable effect on this process. It was also shown that the second phase particles which are located at the grain boundaries of alumina are not involved in the slip process during the second sintering stage. Analysis shows that additives act only in the final (third) stage of spark plasma sintering of alumina

    Effect of High-Energy Ball Milling Time on the Density and Mechanical Properties of W-7%Ni-3%Fe Alloy

    No full text
    The present work was aimed at the investigation of the effect of high-energy ball milling (HEBM) time on the sintering kinetics, structure, and properties of the heavy tungsten alloy (HTA) W-7%Ni-3%Fe. The HTA samples were obtained from nanopowders (20–80 nm) using conventional liquid-phase sintering (LPS) in hydrogen and using spark plasma sintering (SPS) in vacuum. The HTA density was shown to depend non-monotonously on the HEBM time that originates from the formation of nonequilibrium solid solutions in the W-Ni-Fe systems during HEBM. The SPS kinetics of the HTA nanopowders was shown to have a two-stage character, the intensity of which depends on the Coble diffusion creep rate and on the intensity of diffusion of the tungsten atoms in the crystal lattice of the γ-phase. The kinetics of sintering of the initial submicron powders has a single-stage character originating from the intensity of the grain boundary diffusion in the γ-phase. The dependencies of the hardness and of the yield strength on the grain sizes were found to obey the Hall–Petch relation. The hardness, strength, and dynamic strength in the compression tests of the fine-grained tungsten alloys obtained using SPS and LPS were studied
    corecore