2 research outputs found

    Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels

    Get PDF
    Abstract Next generation sequencing of cell-free DNA (cfDNA) is a promising method for treatment monitoring and therapy selection in metastatic breast cancer (MBC). However, distinguishing tumor-specific variants from sequencing artefacts and germline variation with low false discovery rate is challenging when using large targeted sequencing panels covering many tumor suppressor genes. To address this, we built a machine learning model to remove false positive variant calls and augmented it with additional filters to ensure selection of tumor-derived variants. We used cfDNA of 70 MBC patients profiled with both the small targeted Oncomine breast panel (Thermofisher) and the much larger Qiaseq Human Breast Cancer Panel (Qiagen). The model was trained on the panels’ common regions using Oncomine hotspot mutations as ground truth. Applied to Qiaseq data, it achieved 35% sensitivity and 36% precision, outperforming basic filtering. For 20 patients we used germline DNA to filter for somatic variants and obtained 245 variants in total, while our model found seven variants, of which six were also detected using the germline strategy. In ten tumor-free individuals, our method detected in total one (potentially germline) variant, in contrast to 521 variants detected without our model. These results indicate that our model largely detects somatic variants

    Protein function prediction using pre-trained ELMO embeddings

    No full text
    This dataset includes the data for training the protein function prediction models at github.com/stamakro/GCN-for-Structure-and-Function. For each protein, a pickle file is provided, containing its sequence, ELMo embedding and labels. It also includes the weights of the trained models that can be applied directly. README file at github.com/stamakro/GCN-for-Structure-and-Functio
    corecore