55 research outputs found

    What are patient-reported outcomes and why they are important: improving studies of preschool wheeze

    Get PDF
    “This article has been accepted for publication in Archives of Disease in Childhood - Education and Practice. Published Online First: 31 August 2019, following peer review, and the Version of Record can be accessed online at http://dx.doi.org/10.1136/archdischild-2018-316476

    Patient reported outcomes for preschool children with recurrent wheeze

    Get PDF
    Children with preschool wheeze regularly attend UK emergency departments. There is no international consensus on any specific personalised management approach. This paper describes the first attempt to co-design patient-centred outcomes with families. Preschool wheezers’ parents participated in semi-structured interviews and focus-group discussions to air their concerns and identify potential additional support. Fifty-seven families participated in these interviews. From these, themes were defined through qualitative content analysis. Parental experience was mapped to the patient pathway and seven important personalised outcomes were described. These can be used to inform a tool which following further validation could potentially support management of children with preschool wheeze and provide an additional patient focused clinical outcome measure in audit and research

    ERS International Congress 2021: highlights from the Paediatric Assembly

    Full text link
    In this review, Early Career Members of the European Respiratory Society (ERS) and the Chairs of the ERS Assembly 7: Paediatrics present the highlights in paediatric respiratory medicine from the ERS International Congress 2021. The eight scientific Groups of this Assembly cover respiratory physiology and sleep, asthma and allergy, cystic fibrosis (CF), respiratory infection and immunology, neonatology and intensive care, respiratory epidemiology, bronchology, and lung and airway development. We here describe new developments in lung function testing and sleep-disordered breathing diagnosis, early life exposures affecting pulmonary function in children and effect of COVID-19 on sleep and lung function. In paediatric asthma, we present the important role of the exposome in asthma development, and how biologics can provide better outcomes. We discuss new methods to assess distal airways in children with CF, as some details remain blind when using the lung clearance index. Moreover, we summarise the new ERS guidelines for bronchiectasis management in children and adolescents. We present interventions to reduce morbidity and monitor pulmonary function in newborns at risk of bronchopulmonary dysplasia and long-term chronic respiratory morbidity of this disease. In respiratory epidemiology, we characterise primary ciliary dyskinesia, identify early life determinants of respiratory health and describe the effect of COVID-19 preventive measures on respiratory symptoms. Also, we describe the epidemiology of interstitial lung diseases, possible consequences of tracheomalacia and a classification of diffuse alveolar haemorrhage in children. Finally, we highlight that the characterisation of genes and pathways involved in the development of a disease is essential to identify new biomarkers and therapeutic targets

    IL-33-dependent Type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo

    Get PDF
    Rationale: Rhinoviruses are the major cause of asthma exacerbations; however, its underlying mechanisms are poorly understood. We hypothesized that the epithelial cell–derived cytokine IL-33 plays a central role in exacerbation pathogenesis through augmentation of type 2 inflammation. Objectives: To assess whether rhinovirus induces a type 2 inflammatory response in asthma in vivo and to define a role for IL-33 in this pathway. Methods: We used a human experimental model of rhinovirus infection and novel airway sampling techniques to measure IL-4, IL-5, IL-13, and IL-33 levels in the asthmatic and healthy airways during a rhinovirus infection. Additionally, we cultured human T cells and type 2 innate lymphoid cells (ILC2s) with the supernatants of rhinovirusinfected bronchial epithelial cells (BECs) to assess type 2 cytokine production in the presence or absence of IL-33 receptor blockade. Measurements and Main Results: IL-4, IL-5, IL-13, and IL-33 are all induced by rhinovirus in the asthmatic airway in vivo and relate to exacerbation severity. Further, induction of IL-33 correlates with viral load and IL-5 and IL-13 levels. Rhinovirus infection of human primary BECs induced IL-33, and culture of human T cells and ILC2s with supernatants of rhinovirus-infected BECs strongly induced type 2 cytokines. This induction was entirely dependent on IL-33. Conclusions: IL-33 and type 2 cytokines are induced during a rhinovirus-induced asthma exacerbation in vivo. Virus-induced IL-33 and IL-33–responsive T cells and ILC2s are key mechanistic links between viral infection and exacerbation of asthma. IL-33 inhibition is a novel therapeutic approach for asthma exacerbation

    Bronchiolitis needs a revisit: distinguishing between virus entities and their treatments

    Get PDF
    Current data indicate that the bronchiolitis diagnosis comprises more than one condition. Clinically, pathophysiologically, and even genetically three main clusters of patients can be identified among children suffering from severe bronchiolitis (or first wheezing episode): (a) respiratory syncytial virus (RSV)-induced bronchiolitis, characterized by young age of the patient, mechanical obstruction of the airways due to mucus and cell debris, and increased risk of recurrent wheezing. For this illness, an effective prophylactic RSV-specific monoclonal antibody is available; (b) rhinovirus-induced wheezing, associated with atopic predisposition of the patient and high risk of subsequent asthma development, which may, however, be reversed with systemic corticosteroids in those with severe illness; and (c) wheeze due to other viruses, characteristically likely to be less frequent and severe. Clinically, it is important to distinguish between these partially overlapping patient groups as they are likely to respond to different treatments. It appears that the first episode of severe bronchiolitis in under 2-year-old children is a critical event and an important opportunity for designing secondary prevention strategies for asthma. As data have shown bronchiolitis cannot simply be diagnosed using a certain cutoff age, but instead, as we suggest, using the viral etiology as the differentiating factor.Host-parasite interactio

    A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma.

    Get PDF
    Efst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinnIL-33 is a tissue-derived cytokine that induces and amplifies eosinophilic inflammation and has emerged as a promising new drug target for asthma and allergic disease. Common variants at IL33 and IL1RL1, encoding the IL-33 receptor ST2, associate with eosinophil counts and asthma. Through whole-genome sequencing and imputation into the Icelandic population, we found a rare variant in IL33 (NM_001199640:exon7:c.487-1G>C (rs146597587-C), allele frequency = 0.65%) that disrupts a canonical splice acceptor site before the last coding exon. It is also found at low frequency in European populations. rs146597587-C associates with lower eosinophil counts (β = -0.21 SD, P = 2.5×10-16, N = 103,104), and reduced risk of asthma in Europeans (OR = 0.47; 95%CI: 0.32, 0.70, P = 1.8×10-4, N cases = 6,465, N controls = 302,977). Heterozygotes have about 40% lower total IL33 mRNA expression than non-carriers and allele-specific analysis based on RNA sequencing and phased genotypes shows that only 20% of the total expression is from the mutated chromosome. In half of those transcripts the mutation causes retention of the last intron, predicted to result in a premature stop codon that leads to truncation of 66 amino acids. The truncated IL-33 has normal intracellular localization but neither binds IL-33R/ST2 nor activates ST2-expressing cells. Together these data demonstrate that rs146597587-C is a loss of function mutation and support the hypothesis that IL-33 haploinsufficiency protects against asthma.Netherlands Asthma Foundation University Medical Center Groningen Ministry of Health and Environmental Hygiene of Netherlands Netherlands Asthma Stichting Astma Bestrijding BBMRI European Respiratory Society private and public research funds AstraZeneca ALK-Abello, Denmar

    Bronchiolitis needs a revisit: Distinguishing between virus entities and their treatments

    Get PDF
    Current data indicate that the “bronchiolitis” diagnosis comprises more than one condition. Clinically, pathophysiologically, and even genetically three main clusters of patients can be identified among children suffering from severe bronchiolitis (or first wheezing episode): (a) respiratory syncytial virus (RSV)-induced bronchiolitis, characterized by young age of the patient, mechanical obstruction of the airways due to mucus and cell debris, and increased risk of recurrent wheezing. For this illness, an effective prophylactic RSV-specific monoclonal antibody is available; (b) rhinovirus-induced wheezing, associated with atopic predisposition of the patient and high risk of subsequent asthma development, which may, however, be reversed with systemic corticosteroids in those with severe illness; and (c) wheeze due to other viruses, characteristically likely to be less frequent and severe. Clinically, it is important to distinguish between these partially overlapping patient groups as they are likely to respond to different treatments. It appears that the first episode of severe bronchiolitis in under 2-year-old children is a critical event and an important opportunity for designing secondary prevention strategies for asthma. As data have shown bronchiolitis cannot simply be diagnosed using a certain cutoff age, but instead, as we suggest, using the viral etiology as the differentiating factor.</p

    The role of macrophage IL-10/innate IFN interplay during virus-induced asthma

    Full text link
    Activation through different signaling pathways results in two functionally different types of macrophages, the pro-inflammatory (M1) and the anti-inflammatory (M2). The polarization of macrophages toward the pro-inflammatory M1 phenotype is considered to be critical for efficient antiviral immune responses in the lung. Among the various cell types that are present in the asthmatic airways, macrophages have emerged as significant participants in disease pathogenesis, because of their activation during both the inflammatory and resolution phases, with an impact on disease progression. Polarized M1 and M2 macrophages are able to reversibly undergo functional redifferentiation into anti-inflammatory or pro-inflammatory macrophages, respectively, and therefore, macrophages mediate both processes. Recent studies have indicated a predominance of M2 macrophages in asthmatic airways. During a virus infection, it is likely that M2 macrophages would secrete higher amounts of the suppressor cytokine IL-10, and less innate IFNs. However, the interactions between IL-10 and innate IFNs during virus-induced exacerbations of asthma have not been well studied. The possible role of IL-10 as a therapy in allergic asthma has already been suggested, but the divergent roles of this suppressor molecule in the antiviral immune response raise concerns. This review attempts to shed light on macrophage IL-10–IFNs interactions and discusses the role of IL-10 in virus-induced asthma exacerbations. Whereas IL-10 is important in terminating pro-inflammatory and antiviral immune responses, the presence of this immune regulatory cytokine at the beginning of virus infection could impair the response to viruses and play a role in virus-induced asthma exacerbations

    Exhaled breath temperature increases during mild exacerbations in children with virus-induced asthma

    Full text link
    Background: Exhaled breath temperature (EBT) has been suggested as a non-invasive surrogate marker of airway inflammation in asthma. The aim of the study was to evaluate differences in EBT between periods of controlled disease and during exacerbations in children with virus-induced asthma. Methods: Twenty-nine children (aged 6-14 years) with a history of intermittent, virus-induced asthma were included in this case-control study. Cases presented with a common cold and/or mild exacerbation of asthma, while controls were free of asthmatic or common cold symptoms during the previous 6 weeks. A baseline questionnaire was obtained. Atopy assessment, central temperature and a spirometric measurement were recorded. EBT was measured with a new device (Delmedica, Singapore). A nasal wash (for identification of common respiratory viruses) was obtained. Results: Twenty-four children (12 from each group) completed the study. Groups were homogeneous with respect to baseline characteristics. PCR revealed the presence of a virus in 3 out of 17 controls and 10 out of 12 cases (17.6 and 83.3%, respectively, p = 0.002). The most commonly identified virus was rhinovirus (3/3 controls and 7/10 cases, p = 0.02). EBT values were significantly higher for cases (34.91 ± 0.62°C) compared to controls (34.18 ± 1.1°C, p = 0.032). No important differences were observed in the increase rate of EBT (Δe°T) between groups. Conclusions: Changes in airway inflammation during virus-induced asthma exacerbations are reflected in EBT changes. These preliminary data suggest a possible role of EBT measurements in the assessment of airway inflammation in children with virus-induced asthma. Copyright © 2010 S. Karger AG, Basel
    corecore