44 research outputs found

    A concept of hazardous NEO detection and impact warning system

    Get PDF
    In 2013, the well-known Chelyabinsk meteor entered the Earth's atmosphere over Chelyabinsk, Russia. It is estimated that the meteor exploded at altitude near 30 km[2], which damaged thousands of buildings and injured a thousand of residents[3–4]. The estimated size of the meteor is approximately 20 m[2]. Because the meteor approached to Earth from Sun direction, no ground-based observatories could not detect until the impact. Considering such situations, the paper proposes a concept to detect Chelyabinsk-class small Near-Earth Objects. The concept addresses a “last-minute” warning system of NEO impact, in the same manner of “Tsunami” warning. To achieve the mission objective, two locations are assumed for the space telescope installation point i.e., Sun-Earth Lagrange point 1, SEL1 and Artificial Equilibrium Point, AEP. SEL1 is one of the natural equilibrium points, on the other hand, AEP is artificially equilibrated point by Sun and Earth gravity, centrifugal force and low-thrust acceleration. The magnitude of the acceleration to keep AEP is sufficiently small near 1 au radius orbit around the Sun i.e., the order of μm/s2 which can be achieved by solar sail. Through some cases of numerical simulations considering the size of NEOs and detector capability, this paper will show the feasibility of the proposed concept

    Dielectric collapse at the LaAlO<sub>3</sub>/SrTiO<sub>3</sub> (001) heterointerface under applied electric field

    Get PDF
    Abstract The fascinating interfacial transport properties at the LaAlO3/SrTiO3 heterointerface have led to intense investigations of this oxide system. Exploiting the large dielectric constant of SrTiO3 at low temperatures, tunability in the interfacial conductivity over a wide range has been demonstrated using a back-gate device geometry. In order to understand the effect of back-gating, it is crucial to assess the interface band structure and its evolution with external bias. In this study, we report measurements of the gate-bias dependent interface band alignment, especially the confining potential profile, at the conducting LaAlO3/SrTiO3 (001) heterointerface using soft and hard x-ray photoemission spectroscopy in conjunction with detailed model simulations. Depth-profiling analysis incorporating the electric field dependent dielectric constant in SrTiO3 reveals that a significant potential drop on the SrTiO3 side of the interface occurs within ~2 nm of the interface under negative gate-bias. These results demonstrate gate control of the collapse of the dielectric permittivity at the interface, and explain the dramatic loss of electron mobility with back-gate depletion

    Application of Locked Nucleic Acid (LNA) Oligonucleotide–PCR Clamping Technique to Selectively PCR Amplify the SSU rRNA Genes of Bacteria in Investigating the Plant-Associated Community Structures

    No full text
    The simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA) oligonucleotide–PCR clamping technique was applied to selectively amplify bacterial SSU rRNA genes by PCR. LNA oligonucleotides, the sequences of which were complementary to mitochondria and plastid genes, were designed by overlapping a few bases with the annealing position of the bacterial primer and converting DNA bases into LNA bases specific to mitochondria and plastids at the shifted region from the 3 &apos; end of the primer-binding position. PCR with LNA oligonucleotides selectively amplified the bacterial genes while inhibited that of organelle genes. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that conventional amplification without LNA oligonucleotides predominantly gen-erated DGGE bands from mitochondria and plastid genes with few bacterial bands. In contrast, additional bacterial bands were detected in DGGE patterns, the amplicons of which were prepared using LNA oligonucleotides. These results indicated that the detection of bacterial genes had been screened by the excessive amplification of the organelle genes. Sequencing of the bands newly detected by using LNA oligonucleotides revealed that their similarity to the known isolated bacteria was low, suggesting the potential to detect novel bacteria. Thus, application of the LNA oligonucleotide–PCR clamping technique wa
    corecore