111 research outputs found

    STEM nanoanalysis of Au/Pt/Ti-Si3N4 interfacial defects and reactions during local stress of SiGe HBTs

    Get PDF
    A new insight on the behavior of metal contact-insulating interfaces in SiGe heterojunction bipolar transistor is given by high-performance aberration-corrected scanning transmission electron microscopy (STEM) analysis tools equipped with sub-nanometric probe size. It is demonstrated that the presence of initial defects introduced during technological processes play a major role in the acceleration of degradation mechanisms of the structure during stress. A combination of energy-filtered transmission electron microscopy analysis with high angle annular dark field STEM and energy dispersive spectroscopy provides strong evidence that migration of Au-Pt from the metal contacts to Ti/Si3N4 interface is one of the precursors to species interdiffusion and reactions. High current densities and related local heating effects induce the evolution of the pure Ti initial layer into mixture layer composed of Ti, O, and N. Local contamination of Ti layers by fluorine atoms is also pointed out, as well as rupture of TiN thin barrier layer

    Electric double-layer capacitance between an ionic liquid and few-layer graphene

    Get PDF
    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance C-g. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance C-EDL between the ionic liquid and graphene involves the series connection of C-g and the quantum capacitance C-q, which is proportional to the density of states. We investigated the variables that determine C-EDL at the molecular level by varying the number of graphene layers n and thereby optimising C-q. The C-EDL value is governed by C-q at n, 4, and by C-g at n > 4. This transition with n indicates a composite nature for C-EDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor

    TECHNICAL LIMITS FOR DEVELOPMENT OF NATURAL GAS HYDRATE DEPOSITS

    Full text link
    In this work we have formulated the set criteria for cost-effective selection of technologies for industrial production of gas from a hydrate deposit, which rely on the properties of hydrate-bearing rock and the geologic properties of the gas hydrate deposit. For over forty years the world’s energy industry has been trying to effectively master vast unconventional resources of natural gas – the natural gas hydrates [1;3;4]. Specialists have accumulated during this period of time a great deal of knowledge about gas hydrates [8;10]. They established the conditions of hydrate formation in sedimentary rock and the conditions of formation and disappearance of gas hydrate deposits, and offered several classification methods for gas hydrate deposits. Specialists have proposed several methods to locate the gas hydrate accumulations on land and offshore and determined the probable areas where gas hydrate deposits may exist. More than 220 gas hydrate deposits were found to-date, and methods to calculate the amount of gas in a hydrate deposit were developed [1;12]. The principles of gas production from a hydrate deposit were formulated and real experience of commercial natural gas production from a hydrate deposit was gained. However, until now there were no set economic criteria for selection of effective technologies for industrial development of gas hydrate deposits. This results in periodic development of various models not applicable to specific geologic conditions.Non UBCUnreviewe

    Testing antifreeze protein from the longhorn beetle Rhagium mordax

    Full text link
    Low dosage kinetic hydrate inhibitors are employed as alternatives to expensive thermodynamic inhibitors to manage the risk of hydrate formation inside oil and gas pipelines. These chemicals need to be tested at appropriate conditions in the laboratory before deployment in the field. A high pressure micro differential scanning calorimeter HP-mu DSC VII (Setaram Inc.) containing two 50 cc high pressure cells (maximum operating pressure 40 MPa; temperature range -40 to 120 degrees C) was employed to observe methane hydrate formation and decomposition in the presence of hyperactive antifreeze protein from Rhagium mordax (RmAFP) and biodegradable synthetic kinetic inhibitor Luvicap Bio. A systematic capillary dispersion method was used, and this method enhanced the ability to detect the effect of various inhibitors on hydrate formation with small quantities. The presence of RmAFP and Luvicap Bio influence (inhibit) the hydrate formation phenomena significantly. Luvicap Bio (relative strength compared to buffer: 13.3 degrees C) is stronger than RmAFP (9.8 degrees C) as a nucleation inhibitor. However, the presence RmAFP not only delays hydrate nucleation but also reduces the amount of hydrate formed (20%-30%) after nucleation significantly. Unlike RmAFP, Luvicap Bio promoted the amount of hydrate formed after nucleation. The superior hydrate growth inhibition capability and predictable hydrate melting behavior compared to complex, heterogeneous hydrate melting with Luvicap Bio shows that RmAFP can be a potential natural green kinetic inhibitor for hydrate formation in pipelines

    Field data and the gas hydrate markup language

    Full text link
    Data and information exchange are crucial for any kind of scientific research activities and are becoming more and more important. The comparison between different data sets and different disciplines creates new data, adds value, and finally accumulates knowledge. Also the distribution and accessibility of research results is an important factor for international work. The gas hydrate research community is dispersed across the globe and therefore, a common technical communication language or format is strongly demanded. The CODATA Gas Hydrate Data Task Group is creating the Gas Hydrate Markup Language (GHML), a standard based on the Extensible Markup Language (XML) to enable the transport, modeling, and storage of all manner of objects related to gas hydrate research. GHML initially offers an easily deducible content because of the text-based encoding of information, which does not use binary data. The result of these investigations is a custom-designed application schema, which describes the features, elements, and their properties, defining all aspects of Gas Hydrates. One of the components of GHML is the "Field Data" module, which is used for all data and information coming from the field. It considers international standards, particularly the standards defined by the W3C (World Wide Web Consortium) and the OGC (Open Geospatial Consortium). Various related standards were analyzed and compared with our requirements (in particular the Geographic Markup Language (ISO19136, GML) and the whole ISO19000 series). However, the requirements demanded a quick solution and an XML application schema readable for any scientist without a background in information technology. Therefore, ideas, concepts and definitions have been used to build up the modules of GHML without importing any of these Markup languages. This enables a comprehensive schema and simple use
    • 

    corecore