12 research outputs found

    Temporal Network Based Analysis of Cell Specific Vein Graft Transcriptome Defines Key Pathways and Hub Genes in Implantation Injury

    Get PDF
    Vein graft failure occurs between 1 and 6 months after implantation due to obstructive intimal hyperplasia, related in part to implantation injury. The cell-specific and temporal response of the transcriptome to vein graft implantation injury was determined by transcriptional profiling of laser capture microdissected endothelial cells (EC) and medial smooth muscle cells (SMC) from canine vein grafts, 2 hours (H) to 30 days (D) following surgery. Our results demonstrate a robust genomic response beginning at 2 H, peaking at 12–24 H, declining by 7 D, and resolving by 30 D. Gene ontology and pathway analyses of differentially expressed genes indicated that implantation injury affects inflammatory and immune responses, apoptosis, mitosis, and extracellular matrix reorganization in both cell types. Through backpropagation an integrated network was built, starting with genes differentially expressed at 30 D, followed by adding upstream interactive genes from each prior time-point. This identified significant enrichment of IL-6, IL-8, NF-κB, dendritic cell maturation, glucocorticoid receptor, and Triggering Receptor Expressed on Myeloid Cells (TREM-1) signaling, as well as PPARα activation pathways in graft EC and SMC. Interactive network-based analyses identified IL-6, IL-8, IL-1α, and Insulin Receptor (INSR) as focus hub genes within these pathways. Real-time PCR was used for the validation of two of these genes: IL-6 and IL-8, in addition to Collagen 11A1 (COL11A1), a cornerstone of the backpropagation. In conclusion, these results establish causality relationships clarifying the pathogenesis of vein graft implantation injury, and identifying novel targets for its prevention

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Identification of superactive centers in thermally treated formamide-intercalated kaolinite

    Get PDF
    The thermal behavior of a formamide-intercalated mechanochemically activated (dry-ground) kaolinite was investigated by thermogravimetry-mass spectrometry (TG-MS) and diffuse reflectance Fourier transform infrared spectroscopy (DRIFT). After the removal of adsorbed and intercalated formamide, a third type of bonded reagent was identified in the \ud 230 - 350 degrees Celsius temperature range decomposing in situ to CO and NH3. The presence of formamide decomposition products as well as CO2 and various carbonates identified by DRIFT spectroscopy indicates the formation of super-active centers as a result of mechanochemical activation and heat treatment (thermal deintercalation). \ud The structural variance of surface species decreases with the increase of grinding time. The ungrounded mineral contains a low amount of weakly acidic and basic centers. After 3 hours of grinding, the number of acidic centers increases significantly, while on further grinding the super-active centers show increased basicity.\ud With the increase of grinding time and treatment temperature the amount of bicarbonate- and bidentate-type structures decreases in favor of the carboxylate- and monodentate

    Modification of kaolinite surfaces through mechanochemical activation with quartz -a DRIFT and chemometrics study

    Get PDF
    Studies of kaolinite surfaces are of industrial importance. One useful method for studying the changes in kaolinite surface properties is to apply chemometric analyses to the kaolinite surface infrared spectra. A comparison is made between the mechanochemical activation of Kiralyhegy kaolinites with significant amounts of natural quartz and the mechanochemical activation of Zettlitz kaolinite with added quartz. DRIFT spectra were analysed using, Principal Component Analysis (PCA), and multi-criteria decision making (MCDM) methods, PROMETHEE and GAIA. \ud The clear discrimination of the Kiralyhegy spectral objects on the two PC scores plots (400-800 and 800-2030 cm-1) indicated the dominance of quartz. Importantly, no ordering of any spectral objects appeared to be related to grinding time in the PC plots of these spectral regions. Thus, neither the kaolinite nor the quartz, are systematically responsive to grinding time according to the spectral criteria investigated. The third spectral region (2600-3800 cm-1 – OH vibrations), showed apparent systematic ordering of the Kiralyhegy and, to a lesser extent, Zettlitz spectral objects with grinding time. This was attributed to the effect of the natural quartz on the delamination of kaolinite and the accompanying phenomena (i.e. formation of kaolinite spheres and water). The mechanochemical activation of kaolinite and quartz, through dry grinding, results in changes to the surface structure. Different grinding times were adopted to study the rate of destruction of the kaolinite and quartz structures. This relationship (i.e. grinding time) was classified using PROMETHEE and GAIA methodology

    The Mobilization and Recruitment of C-Kit+ Cells Contribute to Wound Healing after Surgery

    Get PDF
    Delayed wound healing is a serious clinical problem in patients after surgery. A recent study has demonstrated that bone marrow-derived c-kit-positive (c-kit+) cells play important roles in repairing and regenerating various tissues and organs. To examine the hypothesis that surgical injury induces the mobilization and recruitment of c-kit+ cells to accelerate wound healing. Mice were subjected to a left pneumonectomy. The mobilization of c-kit+ cells was monitored after surgery. Using green fluorescent protein (GFP+) bone marrow-transplanted chimera mice, we investigated further whether the mobilized c-kit+ cells were recruited to effect wound healing in a skin puncture model. The group with left pneumonectomies increased the c-kit+ and CD34+ stem cells in peripheral blood 24 h after surgery. At 3 days after surgery, the skin wound size was observed to be significantly smaller, and the number of bone marrow-derived GFP+ cells and GFP+/c-kit+ cells in the wound tissue was significantly greater in mice that had received pneumonectomies, as compared with those that had received a sham operation. Furthermore, some of these GFP+ cells were positively expressed specific markers of macrophages (F4/80), endothelial cells (CD31), and myofibroblasts (αSMA). The administration of AMD3100, an antagonist of a stromal-cell derived factor (SDF)-1/CXCR4 signaling pathway, reduced the number of GFP+ cells in wound tissue and completely negated the accelerated wound healing. Surgical injury induces the mobilization and recruitment of c-kit+ cells to contribute to wound healing. Regulating c-kit+ cells may provide a new approach that accelerates wound healing after surgery

    2010 International consensus algorithm for the diagnosis, therapy and management of hereditary angioedema

    Get PDF
    Background: We published the Canadian 2003 International Consensus Algorithm for the Diagnosis, Therapy, and Management of Hereditary Angioedema (HAE; C1 inhibitor [C1-INH] deficiency) and updated this as Hereditary angioedema: a current state-of-the-art review: Canadian Hungarian 2007 International Consensus Algorithm for the Diagnosis, Therapy, and Management of Hereditary Angioedema. Objective: To update the International Consensus Algorithm for the Diagnosis, Therapy and Management of Hereditary Angioedema (circa 2010). Methods: The Canadian Hereditary Angioedema Network (CHAEN)/Réseau Canadien d'angioédème héréditaire (RCAH) http://www.haecanada.com and cosponsors University of Calgary and the Canadian Society of Allergy and Clinical Immunology (with an unrestricted educational grant from CSL Behring) held our third Conference May 15th to 16th, 2010 in Toronto Canada to update our consensus approach. The Consensus document was reviewed at the meeting and then circulated for review. Results: This manuscript is the 2010 International Consensus Algorithm for the Diagnosis, Therapy and Management of Hereditary Angioedema that resulted from that conference. Conclusions: Consensus approach is only an interim guide to a complex disorder such as HAE and should be replaced as soon as possible with large phase III and IV clinical trials, meta analyses, and using data base registry validation of approaches including quality of life and cost benefit analyses, followed by large head-to-head clinical trials and then evidence-based guidelines and standards for HAE disease management.Medicine, Department ofMedicine, Faculty ofPediatrics, Department ofNon UBCReviewedFacult
    corecore