3 research outputs found

    A karbonilstressz szerepe a diabetes szövődményeinek kialakulásában

    Get PDF
    The relationship between the potentially developing complications of the 451 million people affected by diabetes and hyperglycaemia can be based on the enhanced generation of advanced glycation endproducts and the more intensive oxidative and carbonyl stress. Advanced glycation endproducts generated partly due to carbonyl stress play an important role in the pathogenesis of diabetic complications such as elevated arterial thickness, vascular permeability, enhanced angiogenesis or the more rigid vessels induced nephropathy, neuropathy, retinopathy. Furthermore, the elevated thrombocyte aggregation, the reduced fibrinolysis induced elevated coagulation, and the atherosclerosis or the mitochondrial dysfunction are important as well. The most potent target of both the non-oxidative and oxidative generation of advanced glycation endproducts can be the scavenging of alpha,beta-unsaturated aldehydes. Although, aminoguanidine, the prototype of scavenger molecules, showed protection in different animal models, it failed in the human clinical studies. Finally, the clinical studies were terminated almost 20 years ago. The endogen dipeptide L-carnosine was also expected to mitigate the complications due to carbonyl stress. However, its clinical significance was limited by the serum carnosinases and by the consequent low serum stability and bioavailability. The carnosinase resistance of the molecule can be achieved by the change of the carboxyl group of the molecule to hydroxyl group. At the same time, the biosafety and the carbonyl stress scavenging activity of the molecule could be preserved. Although clinical studies could not be performed in the last six months, on the basis of the in vitro and in vivo results, carnosinole seems to be a promising compound to mitigate and prevent the diabetic complications. Thus it is worth to the attention of the clinicians

    The Possible Connection of Two Dual Function Processes: The Relationship of Ferroptosis and the JNK Pathway

    No full text
    Ferroptosis represents a typical process that has dual functions in cell fate decisions since the reduction and/or inhibition of ferroptosis is desirable for the therapies of diseases such as neurological disorders, localized ischemia-reperfusion, kidney injury, and hematological diseases, while the enhanced ferroptosis of cancer cells may benefit patients with cancer. The JNK pathway also has a real dual function in the fate of cells. Multiple factors suggest a potential link between the ferroptotic and JNK pathways; (i) both processes are ROS mediated; (ii) both can be inhibited by lipid peroxide scavengers; (iii) RAS mutations may play a role in the initiation of both pathways. We aimed to investigate the possible link between ferroptosis and the JNK pathway. Interestingly, JNK inhibitor co-treatment could enhance the cancer cytotoxic effect of the ferroptosis inducers in NRAS and KRAS mutation-harboring cells (HT-1080 and MIA PaCa-2). Since cancer’s cytotoxic effect from the JNK inhibitors could only be suspended by the ferroptosis inhibitors, and that sole JNK-inhibitor treatment did not affect cell viability, it seems that the JNK inhibitors “just” amplify the effect of the ferroptosis inducers. This cancer cell death amplifying effect of the JNK inhibitors could not be observed in other oxidative stress-driven cell deaths. Hence, it seems it is specific to ferroptosis. Finally, our results suggest that GSH content/depletion could be an important candidate for switching the anti-cancer effect of JNK inhibitors

    The Performance of HepG2 and HepaRG Systems through the Glass of Acetaminophen-Induced Toxicity

    No full text
    Investigation of drug-induced liver injuries requires appropriate in vivo and in vitro toxicological model systems. In our study, an attempt was made to compare the hepatocarcinoma HepG2 and the stem cell-derived HepaRG cell lines both in two- and three-dimensional culture conditions to find the most suitable model. Comparison of the liver-specific characteristics of these models was performed via the extent and mechanism of acetaminophen (APAP)-induced hepatotoxicity. Investigating the detailed mechanism of APAP-induced hepatotoxicity, different specific cell death inhibitors were used: the pan-caspase inhibitor zVAD-fmk and dabrafenib significantly protected both cell lines from APAP-induced cell death. However, the known specific inhibitors of necroptosis (necrostatin-1 and MDIVI) were only effective in differentiated HepaRG, which suggest a differential execution of activated pathways in the two models. By applying 3D culture methods, CYP2E1 mRNA levels could be elevated, but we failed to achieve a significant increase in hepatocyte function; hence, the 3D cultivation especially in APAP toxicity studies is not necessarily worth the complicated maintenance. Based on our findings, the hepatocyte functions of HepaRG may stand between the properties of HepG2 cells and primary hepatocytes (PHHs). However, it should be noted that in contrast to PHHs having many limitations, HepaRG cells are relatively immortal, having a stable phenotype and CYP450 expression
    corecore