4 research outputs found

    BodyMap-Xs: anatomical breakdown of 17 million animal ESTs for cross-species comparison of gene expression

    Get PDF
    BodyMap-Xs () is a database for cross-species gene expression comparison. It was created by the anatomical breakdown of 17 million animal expressed sequence tag (EST) records in DDBJ using a sorting program tailored for this purpose. In BodyMap-Xs, users are allowed to compare the expression patterns of orthologous and paralogous genes in a coherent manner. This will provide valuable insights for the evolutionary study of gene expression and identification of a responsive motif for a particular expression pattern. In addition, starting from a concise overview of the taxonomical and anatomical breakdown of all animal ESTs, users can navigate to obtain gene expression ranking of a particular tissue in a particular animal. This method may lead to the understanding of the similarities and differences between the homologous tissues across animal species. BodyMap-Xs will be automatically updated in synchronization with the major update in DDBJ, which occurs periodically

    Proteomic Biomarkers for Acute Interstitial Lung Disease in Gefitinib-Treated Japanese Lung Cancer Patients

    Get PDF
    Interstitial lung disease (ILD) events have been reported in Japanese non-small-cell lung cancer (NSCLC) patients receiving EGFR tyrosine kinase inhibitors. We investigated proteomic biomarkers for mechanistic insights and improved prediction of ILD. Blood plasma was collected from 43 gefitinib-treated NSCLC patients developing acute ILD (confirmed by blinded diagnostic review) and 123 randomly selected controls in a nested case-control study within a pharmacoepidemiological cohort study in Japan. We generated ∼7 million tandem mass spectrometry (MS/MS) measurements with extensive quality control and validation, producing one of the largest proteomic lung cancer datasets to date, incorporating rigorous study design, phenotype definition, and evaluation of sample processing. After alignment, scaling, and measurement batch adjustment, we identified 41 peptide peaks representing 29 proteins best predicting ILD. Multivariate peptide, protein, and pathway modeling achieved ILD prediction comparable to previously identified clinical variables; combining the two provided some improvement. The acute phase response pathway was strongly represented (17 of 29 proteins, p = 1.0×10−25), suggesting a key role with potential utility as a marker for increased risk of acute ILD events. Validation by Western blotting showed correlation for identified proteins, confirming that robust results can be generated from an MS/MS platform implementing strict quality control
    corecore