145 research outputs found

    Effects of Fipronil on Non-target Ants and Other Invertebrates in a Program for Eradication of the Argentine Ant, Linepithema humile

    Get PDF
    Pesticides are frequently used to eradicate invasive ant species, but pose ecological harm. Previous studies assessed non-target effects only in terms of the increase or decrease of abundance or species richness after pesticide applications. Positive effects of the release from pressure caused by invasive ant species have not been considered so far. To more accurately assess pesticide effects in the field, the non-target effects of pesticides should be considered separately from the positive effects of such releases. Here, we used monitoring data of ants and other invertebrates collected in a program for the eradication of the Argentine ant, Linepithema humile (Mayr), using fipronil. First, we separately assessed the effects of L. humile abundance and fipronil exposure on non-target ants and other invertebrates using generalized linear models. The abundance of L. humile and the number of pesticide treatments were negatively associated with the total number of non-target individuals and taxonomic richness. We also noted negative relationships between the number of individuals of some ant species and other invertebrate taxonomic groups. The L. humile × pesticide interaction was significant, suggesting that the abundance of L. humile affected the level of impact of pesticide treatment on non-target fauna. Second, we evaluated the dynamics of non-target ant communities for 3 years using principal response curve analyses. Non-target ant communities treated with fipronil continuously for 3 years recovered little, whereas those treated for 1 year recovered to the level of the untreated and non-invaded environment

    KLF11 and association study in Japanese

    Get PDF
    Aims: Krüppel-like factor 11 (KLF11) is a transcriptional factor of the zinc finger domain family that regulates the expression of insulin. In North European populations, its common functional variant Q62R (rs35927125) is a strong genetic factor for Type 2 diabetes (P = 0.00033, odds ratio for G allele = 1.29, 95% CI 1.12–1.49). We examined the contribution of KLF11 variants to the susceptibility to Type 2 diabetes in a Japanese population. Methods: By re-sequencing Japanese individuals (n = 24, partly 96), we screened all four exons, exon/intron boundaries and flanking regions of KLF11. Verified single nucleotide polymorphisms (SNPs) were genotyped in 731 initial samples (369 control and 362 case subjects). Subsequently, we tested for association in 1087 samples (524 control and 563 case subjects), which were collected in different districts of Japan from the initial samples. Results: We identified eight variants, including a novel A/C variant on intron 3, but no mis-sense mutations. In an association study, we failed to find any significant result of SNPs (minor allele frequency 8.2–46.2%) after correcting for multiple testing. Similarly, no haplotypes were associated with Type 2 diabetes. It is notable that the G allele in rs35927125 was completely absent in 1818 Japanese individuals. Conclusions: Genetic variants in KLF11 are unlikely to have a major effect of Type 2 diabetes in the Japanese population, although they were significantly associated in North European populations. These observations might help to determine the role of KLF11 variants in Type 2 diabetes in different populations

    Neutral currents and tests of three-neutrino unitarity in long-baseline experiments

    Full text link
    We examine a strategy for using neutral current measurements in long-baseline neutrino oscillation experiments to put limits on the existence of more than three light, active neutrinos. We determine the relative contributions of statistics, cross section uncertainties, event misidentification and other systematic errors to the overall uncertainty of these measurements. As specific case studies, we make simulations of beams and detectors that are like the K2K, T2K, and MINOS experiments. We find that the neutral current cross section uncertainty and contamination of the neutral current signal by charge current events allow a sensitivity for determining the presence of sterile neutinos at the 0.10--0.15 level in probablility.Comment: 24 pages, Latex2e, uses graphicx.sty, 2 postscript figures. Submitted to the Neutrino Focus Issue of New Journal Physics at http://www.njp.or

    First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance

    Get PDF
    KamLAND has been used to measure the flux of νˉe\bar{\nu}_e's from distant nuclear reactors. In an exposure of 162 ton\cdotyr (145.1 days) the ratio of the number of observed inverse β\beta-decay events to the expected number of events without disappearance is 0.611±0.085(stat)±0.041(syst)0.611\pm 0.085 {\rm (stat)} \pm 0.041 {\rm (syst)} for νˉe\bar{\nu}_e energies >> 3.4 MeV. The deficit of events is inconsistent with the expected rate for standard νˉe\bar{\nu}_e propagation at the 99.95% confidence level. In the context of two-flavor neutrino oscillations with CPT invariance, these results exclude all oscillation solutions but the `Large Mixing Angle' solution to the solar neutrino problem using reactor νˉe\bar{\nu}_e sources.Comment: 6 pages, 6 figure

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Discovery of naked charm particles and lifetime differences among charm species using nuclear emulsion techniques innovated in Japan

    Get PDF
    This is a historical review of the discovery of naked charm particles and lifetime differences among charm species. These discoveries in the field of cosmic-ray physics were made by the innovation of nuclear emulsion techniques in Japan. A pair of naked charm particles was discovered in 1971 in a cosmic-ray interaction, three years prior to the discovery of the hidden charm particle, J/Ψ, in western countries. Lifetime differences between charged and neutral charm particles were pointed out in 1975, which were later re-confirmed by the collaborative Experiment E531 at Fermilab. Japanese physicists led by K.Niu made essential contributions to it with improved emulsion techniques, complemented by electronic detectors. This review also discusses the discovery of artificially produced naked charm particles by us in an accelerator experiment at Fermilab in 1975 and of multiple-pair productions of charm particles in a single interaction in 1987 by the collaborative Experiment WA75 at CERN

    Lack of association of genetic variation in chromosome region 15q14-22.1 with type 2 diabetes in a Japanese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromosome 15q14-22.1 has been linked to type 2 diabetes (T2D) and its related traits in Japanese and other populations. The presence of T2D disease susceptibility variant(s) was assessed in the 21.8 Mb region between <it>D15S118 </it>and <it>D15S117 </it>in a Japanese population using a region-wide case-control association test.</p> <p>Methods</p> <p>A two-stage association test was performed using Japanese subjects: The discovery panel (Stage 1) used 372 cases and 360 controls, while an independent replication panel (Stage 2) used 532 cases and 530 controls. A total of 1,317 evenly-spaced, common SNP markers with minor allele frequencies > 0.10 were typed for each stage. Captured genetic variation was examined in HapMap JPT SNPs, and a haplotype-based association test was performed.</p> <p>Results</p> <p>SNP2140 (rs2412747) (<it>C/T</it>) in intron 33 of the ubiquitin protein ligase E3 component n-recognin 1 (<it>UBR1</it>) gene was selected as a landmark SNP based on repeated significant associations in Stage 1 and Stage 2. However, the marginal <it>p </it>value (<it>p </it>= 0.0043 in the allelic test, OR = 1.26, 95% CI = 1.07–1.48 for combined samples) was weak in a single locus or haplotype-based association test. We failed to find any significant SNPs after correcting for multiple testing.</p> <p>Conclusion</p> <p>The two-stage association test did not reveal a strong association between T2D and any common variants on chromosome 15q14-22.1 in 1,794 Japanese subjects. A further association test with a larger sample size and denser SNP markers is required to confirm these observations.</p

    Ablation of TSC2 Enhances Insulin Secretion by Increasing the Number of Mitochondria through Activation of mTORC1

    Get PDF
    ) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells. mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes. mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1.Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells

    Neurofeedback Using Real-Time Near-Infrared Spectroscopy Enhances Motor Imagery Related Cortical Activation

    Get PDF
    Accumulating evidence indicates that motor imagery and motor execution share common neural networks. Accordingly, mental practices in the form of motor imagery have been implemented in rehabilitation regimes of stroke patients with favorable results. Because direct monitoring of motor imagery is difficult, feedback of cortical activities related to motor imagery (neurofeedback) could help to enhance efficacy of mental practice with motor imagery. To determine the feasibility and efficacy of a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS), two separate experiments were performed. Experiment 1 was used in five subjects to evaluate whether real-time cortical oxygenated hemoglobin signal feedback during a motor execution task correlated with reference hemoglobin signals computed off-line. Results demonstrated that the NIRS-mediated neurofeedback system reliably detected oxygenated hemoglobin signal changes in real-time. In Experiment 2, 21 subjects performed motor imagery of finger movements with feedback from relevant cortical signals and irrelevant sham signals. Real neurofeedback induced significantly greater activation of the contralateral premotor cortex and greater self-assessment scores for kinesthetic motor imagery compared with sham feedback. These findings suggested the feasibility and potential effectiveness of a NIRS-mediated real-time neurofeedback system on performance of kinesthetic motor imagery. However, these results warrant further clinical trials to determine whether this system could enhance the effects of mental practice in stroke patients
    corecore