29 research outputs found

    Direct Vasocontractile Activities of Bupivacaine Enantiomers on the Isolated Rat Thoracic Aorta

    Get PDF
    Background. In vitro studies with isolated arteries have shown direct vasoactivity of racemic bupivacaine. However, there is little information on the direct vasoactivities of bupivacaine enantiomers, S(−)- and R(+)-bupivacaine. Methods. We performed functional examinations using isolated intact thoracic aortic rings from male Wistar rats. Changes in ring tension produced by S(−)-, R(+)-, or racemic bupivacaine were measured in Krebs solution. Results. S(−)-bupivacaine produced the strongest contraction of the three agents. R(+)-bupivacaine showed limited vasoconstriction. The effects of racemic bupivacaine were located between these two. Conclusion. Each bupivacaine enantiomer showed specific vasocontractile activity, which affects the activity of racemic bupivacaine

    Characteristic interactivity of landiolol, an ultra-short-acting highly selective β1-blocker, with biomimetic membranes: Comparisons with β1-selective esmolol and non-selective propranolol and alprenolol.

    Get PDF
    Although β1-blockers have been perioperatively used to reduce the cardiac disorders associated with general anesthesia, little is known about the mechanistic characteristics of ultra-short-acting highly selective β1-blocker landiolol. We studied its membrane-interacting property in comparison with other selective and non-selective β1-blockers. Biomimetic membranes prepared with phospholipids and cholesterol of varying compositions were treated with β1-selective landiolol and esmolol and non-selective propranolol and alprenolol at 0.5-200 μM. The membrane interactivity and the antioxidant activity were determined by measuring fluorescence polarization and by peroxidizing membrane lipids with peroxynitrite, respectively. Non-selective β1-blockers, but not selective ones, intensively acted on 1,2-dipalmitoylphosphatidylcholine (DPPC) liposomal membranes and cardiomyocyte-mimetic membranes to increase the membrane fluidity. Landiolol and its inactive metabolite distinctively decreased the fluidity of DPPC liposomal membranes, suggesting that a membrane-rigidifying effect is attributed to the morpholine moiety in landiolol structure but unlikely to clinically contribute to the β1-blocking effect of landiolol. Propranolol and alprenolol interacted with lipid raft model membranes, whereas neither landiolol nor esmolol. All drugs fluidized mitochondria-mimetic membranes and inhibited the membrane lipid peroxidation with the potency correlating to their membrane interactivity. Landiolol is characterized as a drug devoid of the interactivity with membrane lipid rafts relating to β2-adrenergic receptor blockade. The differentiation between β1-blocking selectivity and non-selectivity is compatible with that between membrane non-interactivity and interactivity. The mitochondrial membrane fluidization by landiolol independent of blocking β1-adrenergic receptors is responsible for the antioxidant cardioprotection common to non-selective and selective β1-blockers.Although β1-blockers have been perioperatively used to reduce the cardiac disorders associated with general anesthesia, little is known about the mechanistic characteristics of ultra-short-acting highly selective β1-blocker landiolol. We studied its membrane-interacting property in comparison with other selective and non-selective β1-blockers. Biomimetic membranes prepared with phospholipids and cholesterol of varying compositions were treated with β1-selective landiolol and esmolol and non-selective propranolol and alprenolol at 0.5-200 μM. The membrane interactivity and the antioxidant activity were determined by measuring fluorescence polarization and by peroxidizing membrane lipids with peroxynitrite, respectively. Non-selective β1-blockers, but not selective ones, intensively acted on 1,2-dipalmitoylphosphatidylcholine (DPPC) liposomal membranes and cardiomyocyte-mimetic membranes to increase the membrane fluidity. Landiolol and its inactive metabolite distinctively decreased the fluidity of DPPC liposomal membranes, suggesting that a membrane-rigidifying effect is attributed to the morpholine moiety in landiolol structure but unlikely to clinically contribute to the β1-blocking effect of landiolol. Propranolol and alprenolol interacted with lipid raft model membranes, whereas neither landiolol nor esmolol. All drugs fluidized mitochondria-mimetic membranes and inhibited the membrane lipid peroxidation with the potency correlating to their membrane interactivity. Landiolol is characterized as a drug devoid of the interactivity with membrane lipid rafts relating to β2-adrenergic receptor blockade. The differentiation between β1-blocking selectivity and non-selectivity is compatible with that between membrane non-interactivity and interactivity. The mitochondrial membrane fluidization by landiolol independent of blocking β1-adrenergic receptors is responsible for the antioxidant cardioprotection common to non-selective and selective β1-blockers

    Local anesthetic failure associated with inflammation: verification of the acidosis mechanism and the hypothetic participation of inflammatory peroxynitrite

    Get PDF
    The presence of inflammation decreases local anesthetic efficacy, especially in dental anesthesia. Although inflammatory acidosis is most frequently cited as the cause of such clinical phenomena, this has not been experimentally proved. We verified the acidosis mechanism by studying the drug and membrane lipid interaction under acidic conditions together with proposing an alternative hypothesis. Liposomes and nerve cell model membranes consisting of phospholipids and cholesterol were treated at different pH with lidocaine, prilocaine and bupivacaine (0.05%–0.2%, w/v). Their membrane-interactive potencies were compared by the induced-changes in membrane fluidity. Local anesthetics fluidized phosphatidylcholine membranes with the potency being significantly lower at pH 6.4 than at pH 7.4 (p < 0.01), supporting the acidosis theory. However, they greatly fluidized nerve cell model membranes even at pH 6.4 corresponding to inflamed tissues, challenging the conventional mechanism. Local anesthetics acted on phosphatidylserine liposomes, as well as nerve cell model membranes, at pH 6.4 with almost the same potency as that at pH 7.4, but not on phosphatidylcholine, phosphatidylethanolamine and sphingomyelin liposomes. Since the positively charged anesthetic molecules are able to interact with nerve cell membranes by ion-paring with anionic components like phosphatidylserine, tissue acidosis is not essentially responsible for the local anesthetic failure associated with inflammation. The effects of local anesthetics on nerve cell model membranes were inhibited by treating with peroxynitrite (50 μM), suggesting that inflammatory cells producing peroxynitrite may affect local anesthesia

    Discrimination of Stereoisomers by Their Enantioselective Interactions with Chiral Cholesterol-Containing Membranes

    No full text
    Discrimination between enantiomers is an important subject in medicinal and biological chemistry because they exhibit markedly different bioactivity and toxicity. Although stereoisomers should vary in the mechanistic interactions with chiral targets, their discrimination associated with the mode of action on membrane lipids is scarce. The aim of this study is to reveal whether enantiomers selectively act on chiral lipid membranes. Different classes of stereoisomers were subjected at 5–200 μM to reactions with biomimetic phospholipid membranes containing ~40 mol % cholesterol to endow the lipid bilayers with chirality and their membrane interactions were comparatively evaluated by measuring fluorescence polarization. All of the tested compounds interacted with cholesterol-containing membranes to modify their physicochemical property with different potencies between enantiomers, correlating to those of their experimental and clinical effects. The rank order of membrane interactivity was reversed by changing cholesterol to C3-epimeric α-cholesterol. The same selectivity was also obtained from membranes prepared with 5α-cholestan-3β-ol and 5β-cholestan-3α-ol diastereomers. The opposite configuration allows molecules to interact with chiral sterol-containing membranes enantioselectively, and the specific β configuration of cholesterol’s 3-hydroxyl group is responsible for such selectivity. The enantioselective membrane interaction has medicinal implications for the characterization of the stereostructures with higher bioactivity and lower toxicity

    The membrane interaction of drugs as one of mechanisms for their enantioselective effects.

    Get PDF
    The discrimination between different enantiomers of chiral compounds by the biological system is medically important as the pharmacological and toxicological effects of enantiomeric drugs significantly differ depending on their stereostructures. One enantiomer is preferred over its enantiomeric counterpart and a racemic mixture for higher activity or lower toxicity. Such enantioselectivity has been exclusively explained by the stereostructure-specific interactions with receptors, channels and enzymes of drugs including general and local anesthetics, sedatives, hypnotics, anti-inflammatory drugs, analgesics and β-adrenergic antagonists. These drugs can act on not only protein targets but also lipid biomembranes. Almost all of the relevant proteins are embedded in or associated with membrane lipid bilayers. Therefore, we propose one of possible mechanisms that drugs might enantioselectively interact with membrane lipids and induce changes in membrane property like fluidity which are discriminable between enantiomers. If the induced changes are different between enantiomers, enantiomeric drugs would differently influence the membrane lipid environments for receptors, channels and enzymes, resulting in the enantioselectivity of drug effects. The enantioselective membrane interactions of drugs could be mediated by membrane component cholesterol and phospholipids, both of which have chiral centers in structure as well as drug enantiomers. Chiral membrane lipids possibly exhibit the preference for the interactions with drug molecules of either the same chirality or the different chirality, producing the selectivity to one drug enantiomer. The proposed hypothesis may be available to investigate more useful medicines based on the novel concept of drug enantioselectivity.The discrimination between different enantiomers of chiral compounds by the biological system is medically important as the pharmacological and toxicological effects of enantiomeric drugs significantly differ depending on their stereostructures. One enantiomer is preferred over its enantiomeric counterpart and a racemic mixture for higher activity or lower toxicity. Such enantioselectivity has been exclusively explained by the stereostructure-specific interactions with receptors, channels and enzymes of drugs including general and local anesthetics, sedatives, hypnotics, anti-inflammatory drugs, analgesics and β-adrenergic antagonists. These drugs can act on not only protein targets but also lipid biomembranes. Almost all of the relevant proteins are embedded in or associated with membrane lipid bilayers. Therefore, we propose one of possible mechanisms that drugs might enantioselectively interact with membrane lipids and induce changes in membrane property like fluidity which are discriminable between enantiomers. If the induced changes are different between enantiomers, enantiomeric drugs would differently influence the membrane lipid environments for receptors, channels and enzymes, resulting in the enantioselectivity of drug effects. The enantioselective membrane interactions of drugs could be mediated by membrane component cholesterol and phospholipids, both of which have chiral centers in structure as well as drug enantiomers. Chiral membrane lipids possibly exhibit the preference for the interactions with drug molecules of either the same chirality or the different chirality, producing the selectivity to one drug enantiomer. The proposed hypothesis may be available to investigate more useful medicines based on the novel concept of drug enantioselectivity

    Interaction of local anesthetics with biomembranes consisting of phospholipids and cholesterol: mechanistic and clinical implications for anesthetic and cardiotoxic effects.

    Get PDF
    Despite a long history in medical and dental application, the molecular mechanism and precise site of action are still arguable for local anesthetics. Their effects are considered to be induced by acting on functional proteins, on membrane lipids, or on both. Local anesthetics primarily interact with sodium channels embedded in cell membranes to reduce the excitability of nerve cells and cardiomyocytes or produce a malfunction of the cardiovascular system. However, the membrane protein-interacting theory cannot explain all of the pharmacological and toxicological features of local anesthetics. The administered drug molecules must diffuse through the lipid barriers of nerve sheaths and penetrate into or across the lipid bilayers of cell membranes to reach the acting site on transmembrane proteins. Amphiphilic local anesthetics interact hydrophobically and electrostatically with lipid bilayers and modify their physicochemical property, with the direct inhibition of membrane functions, and with the resultant alteration of the membrane lipid environments surrounding transmembrane proteins and the subsequent protein conformational change, leading to the inhibition of channel functions. We review recent studies on the interaction of local anesthetics with biomembranes consisting of phospholipids and cholesterol. Understanding the membrane interactivity of local anesthetics would provide novel insights into their anesthetic and cardiotoxic effects.Despite a long history in medical and dental application, the molecular mechanism and precise site of action are still arguable for local anesthetics. Their effects are considered to be induced by acting on functional proteins, on membrane lipids, or on both. Local anesthetics primarily interact with sodium channels embedded in cell membranes to reduce the excitability of nerve cells and cardiomyocytes or produce a malfunction of the cardiovascular system. However, the membrane protein-interacting theory cannot explain all of the pharmacological and toxicological features of local anesthetics. The administered drug molecules must diffuse through the lipid barriers of nerve sheaths and penetrate into or across the lipid bilayers of cell membranes to reach the acting site on transmembrane proteins. Amphiphilic local anesthetics interact hydrophobically and electrostatically with lipid bilayers and modify their physicochemical property, with the direct inhibition of membrane functions, and with the resultant alteration of the membrane lipid environments surrounding transmembrane proteins and the subsequent protein conformational change, leading to the inhibition of channel functions. We review recent studies on the interaction of local anesthetics with biomembranes consisting of phospholipids and cholesterol. Understanding the membrane interactivity of local anesthetics would provide novel insights into their anesthetic and cardiotoxic effects

    Membrane Interactivity of Capsaicin Antagonized by Capsazepine

    No full text
    Although the pharmacological activity of capsaicin has been explained by its specific binding to transient receptor potential vanilloid type 1, the amphiphilic structure of capsaicin may enable it to act on lipid bilayers. From a mechanistic point of view, we investigated whether capsaicin and its antagonist capsazepine interact with biomimetic membranes, and how capsazepine influences the membrane effect of capsaicin. Liposomal phospholipid membranes and neuro-mimetic membranes were prepared with 1,2-dipalmitoylphosphatidylcholine and with 1-palmitoyl-2-oleoylphosphatidylcholine and sphingomyelin plus cholesterol, respectively. These membrane preparations were subjected to reactions with capsaicin and capsazepine at 0.5–250 μM, followed by measuring fluorescence polarization to determine the membrane interactivity to modify the fluidity of membranes. Both compounds acted on 1,2-dipalmitoylphosphatidylcholine bilayers and changed membrane fluidity. Capsaicin concentration-dependently interacted with neuro-mimetic membranes to increase their fluidity at low micromolar concentrations, whereas capsazepine inversely decreased the membrane fluidity. When used in combination, capsazepine inhibited the effect of capsaicin on neuro-mimetic membranes. In addition to the direct action on transmembrane ion channels, capsaicin and capsazepine share membrane interactivity, but capsazepine is likely to competitively antagonize capsaicin’s interaction with neuro-mimetic membranes at pharmacokinetically-relevant concentrations. The structure-specific membrane interactivity may be partly responsible for the analgesic effect of capsaicin
    corecore