285 research outputs found

    Both midzone and astral microtubules are involved in the delivery of cytokinesis signals: insights from the mobility of aurora B

    Get PDF
    To address the mechanism that coordinates cytokinesis with mitosis, we have studied the dynamics of aurora B, a chromosomal passenger protein involved in signaling cytokinesis. Photobleaching analyses indicated dynamic exchange of aurora B between a centromeric and a cytoplasmic pool before anaphase onset, and stable associations with microtubules after anaphase onset. Bleaching near centromeres upon anaphase onset affected the subsequent appearance of fluorescence along midzone microtubules, but not that near the lateral equatorial cortex, suggesting that there were centromeric-dependent and -independent pathways that transported aurora B to the equator. The former delivered centromeric aurora B along midzone microtubules, whereas the latter delivered cytoplasmic aurora B along astral microtubules. We suggest that cultured cells use midzone microtubules as the primary signaling pathway for cytokinesis, whereas embryos, with their stockpile of cytoplasmic proteins and large sizes, rely primarily on astral microtubules

    Formation of mammalian erythrocytes: chromatin condensation and enucleation

    Get PDF
    In all vertebrates, the cell nucleus becomes highly condensed and transcriptionally inactive during the final stages of red cell biogenesis. Enucleation, the process by which the nucleus is extruded by budding off from the erythroblast, is unique to mammals. Enucleation has critical physiological and evolutionary significance in that it allows an elevation of hemoglobin levels in the blood and also gives red cells their flexible biconcave shape. Recent experiments reveal that enucleation involves multiple molecular and cellular pathways that include histone deacetylation, actin polymerization, cytokinesis, cell–matrix interactions, specific microRNAs and vesicle trafficking; many evolutionarily conserved proteins and genes have been recruited to participate in this uniquely mammalian process. In this review, we discuss recent advances in mammalian erythroblast chromatin condensation and enucleation, and conclude with our perspectives on future studies.National Institutes of Health (U.S.) (Grant P01 HL 32262)Amgen Inc. (Research Grant

    X-Ray and Gamma-Ray Emission from the PSR 1259-63 / Be Star System

    Full text link
    PSR 1259-63 is a radio pulsar orbiting a Be star in a highly eccentric orbit. Soft and hard X-rays are observed from this binary system. We apply the shock powered emission model to this system. The collision of the pulsar and Be star winds forms a shock, which accelerates electrons and positrons to the relativistic energies. We derive the energy distribution of relativistic electrons and positrons as a function of the distance from the shock in the pulsar nebula. We calculate the X-rays and γ\gamma-rays emitted from the relativistic electrons and positrons in the nebula at various orbital phases, taking into account the Klein-Nishina effect fully. The shock powered emission model can explain the observed X-ray properties approximately. We obtain from the comparison with observations that a fraction of 0.1\sim 0.1 of the pulsar spin-down luminosity should be transformed into the relativistic electrons and positrons. We find that the magnetization parameter of the pulsar wind, the ratio of the Poynting flux to the kinetic energy flux, is 0.1\sim 0.1 immediately upstream of the termination shock of the pulsar wind, and may decrease with distance from the pulsar. We predict the flux of 10 MeV - 100 GeV γ\gamma-rays which may be nearly equal to the detection threshold in the future projects.Comment: 18 pages, 9 figures, accepted for publication in PAS

    Specific distribution of overexpressed aurora B kinase in interphase normal epithelial cells

    Get PDF
    BACKGROUND: It is known that aurora B, a chromosomal passenger protein responsible for the proper progression of mitosis and cytokinesis, is overexpressed throughout the cell cycle in cancer cells. Overexpression of aurora B produced multinuclearity and induced aggressive metastasis, suggesting that overexpressed aurora B has multiple functions in cancer development. However, the detailed dynamics and functions of overexpressed aurora B are poorly understood. RESULTS: We overexpressed GFP fused aurora B kinase in normal rat kidney epithelial cells. Using spinning disk confocal microscopy, we found that overexpressed aurora B-GFP was predominantly localized in the nucleus and along the cortex as a dot-like or short filamentous structure during interphase. Time-lapse imaging revealed that a cytoplasmic fraction of overexpressed aurora B-GFP was incorporated into the nucleus after cell division. Immunofluorescence studies showed that the nuclear fraction of overexpressed aurora B did not induce ectopic phosphorylation of histone H3 after cell division. The cytoplasmic fraction of overexpressed aurora B-GFP was mainly associated with cortical actin filaments but not stress fibers. Myosin II regulatory light chain, one of the possible targets for aurora B, did not colocalize with cortical aurora B-GFP, suggesting that overexpressed aurora B did not promote phosphorylation of myosin II regulatory light chain in interphase cells. CONCLUSION: We conclude that overexpressed aurora B has a specific localization pattern in interphase cells. Based on our findings, we propose that overexpressed aurora B targets the nuclear and cortical proteins during interphase, which may contribute to cancer development and tumor metastasis

    Role of adsorption kinetics in the low-temperature Si growth by gas-source molecular beam epitaxy: In situ observations and detailed modeling of the growth

    Get PDF
    科研費報告書収録論文(課題番号:12650025・基盤研究(C)(2)・H12~H13/研究代表者:末光, 眞希/有機ケイ素を用いたSiCエピタキシャル成長の表面化学

    Regulation of cell cycle by the anaphase spindle midzone

    Get PDF
    BACKGROUND: A number of proteins accumulate in the spindle midzone and midbody of dividing animal cells. Besides proteins essential for cytokinesis, there are also components essential for interphase functions, suggesting that the spindle midzone and/or midbody may play a role in regulating the following cell cycle. RESULTS: We microsurgically severed NRK epithelial cells during anaphase or telophase, such that the spindle midzone/midbody was associated with only one of the daughter cells. Time-lapse recording of cells severed during early anaphase indicated that the cell with midzone underwent cytokinesis-like cortical contractions and progressed normally through the interphase, whereas the cell without midzone showed no cortical contraction and an arrest or substantial delay in the progression of interphase. Similar microsurgery during telophase showed a normal progression of interphase for both daughter cells with or without the midbody. Microsurgery of anaphase cells treated with cytochalasin D or nocodazole indicated that interphase progression was independent of cortical ingression but dependent on microtubules. CONCLUSIONS: We conclude that the mitotic spindle is involved in not only the separation of chromosomes but also the regulation of cell cycle. The process may involve activation of components in the spindle midzone that are required for the cell cycle, and/or degradation of components that are required for cytokinesis but may interfere with the cell cycle

    Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts

    Get PDF
    Background: During the final stages of differentiation of mammalian erythroid cells, the chromatin is condensed and enucleated. We previously reported that Rac GTPases and their downstream target, mammalian homolog of Drosophila diaphanous 2 (mDia2), are required for enucleation of in vitro cultured mouse fetal liver erythroblasts. However, it is not clear how chromatin condensation is achieved and whether it is required for enucleation. Design and Methods: Mouse fetal liver erythroblasts were purified from embryonic day 14.5 pregnant mice and cultured in erythropoietin-containing medium. Enucleation was determined by flow-cytometry based analysis after treatment with histone deacetylase inhibitors or infection with lentiviral short harirpin RNA. Results: We showed that histone deacetylases play critical roles in chromatin condensation and enucleation in cultured mouse fetal liver erythroblasts. Enzymatic inhibition of histone deacetylases by trichostatin A or valproic acid prior to the start of enucleation blocked chromatin condensation, contractile actin ring formation and enucleation. We further demonstrated that histone deacetylases 1, 2, 3 and 5 are highly expressed in mouse fetal erythroblasts. Short hairpin RNA down-regulation of histone deacetylase 2, but not of the other histone deacetylases, phenotypically mimicked the effect of trichostatin A or valproic acid treatment, causing significant inhibition of chromatin condensation and enucleation. Importantly, knock-down of histone deacetylase 2 did not affect erythroblast proliferation, differentiation, or apoptosis. Conclusions: These results identify histone deacetylase 2 as an important regulator, mediating chromatin condensation and enucleation in the final stages of mammalian erythropoiesis.National Institutes of Health (U.S.) (NIH grant P01 HL 32262)Amgen, Inc.National Institutes of Health (U.S.) (Pathway to Independence Award)Leukemia & Lymphoma Society of AmericaTemasek Life Sciences Laborator

    Identification and characterization of novel components of a Ca2+/calmodulin-dependent protein kinase cascade in HeLa cells

    Get PDF
    AbstractIn this report, we cloned a novel calmodulin-kinase (CaM-KIδ) from HeLa cells and characterized its activation mechanism. CaM-KIδ exhibits Ca2+/CaM-dependent activity that is enhanced (∼30-fold) in vitro by phosphorylation of its Thr180 by CaM-K kinase (CaM-KK)α, consistent with detection of CaM-KIδ-activating activity in HeLa cells. We also identified a novel CaM-KKβ isoform (CaM-KKβ-3) in HeLa cells whose activity was highly Ca2+/CaM-independent. Transiently expressed CaM-KIδ exhibited enhanced protein kinase activity in HeLa cells without ionomycin stimulation. This sustained activation of CaM-KIδ was completely abolished by Thr180Ala mutation and inhibited by CaM-KK inhibitor, STO-609, indicating a functional CaM-KK/CaM-KIδ cascade in HeLa cells
    corecore