56 research outputs found

    Enhanced growth of seed viruses for H5N1 influenza vaccines

    Get PDF
    AbstractSeed viruses used to produce inactivated H5N1 influenza vaccines are recombinant viruses with modified avirulent-type hemagglutinin (HA) and intact neuraminidase (NA) genes, both derived from an H5N1 isolate, and all remaining genes from the PR8 strain, which grows well in eggs. However, some reassortants grow suboptimally in eggs, imposing obstacles to timely, cost-efficient vaccine production. Here, we demonstrate that our PR8 strain supports better in ovo growth than the PR8 strain used for the WHO-recommended seed virus, NIBRG-14. Moreover, inclusion of an alternative NA protein further enhanced viral growth in eggs. These findings suggest that our H5N1 vaccine candidates would increase the availability of H5N1 vaccine doses at the onset of a new pandemic

    Isolation and Characterization of Human Monoclonal Antibodies That Recognize the Influenza A(H1N1)pdm09 Virus Hemagglutinin Receptor-Binding Site and Rarely Yield Escape Mutant Viruses

    Get PDF
    The influenza A virus rapidly mutates to escape from antibodies. Here, we isolated and characterized three human monoclonal antibodies (mAbs) that neutralize A(H1N1)pdm09 viruses. Generation of escape mutant viruses suggested that these antibodies recognized conserved residues of the receptor-binding site (RBS) of hemagglutinin (HA) and that mutant viruses that escaped from these mAbs rarely appeared. Moreover, the escape mutant viruses grew significantly slower than wild-type virus, indicating their reduced fitness. These results indicate that these three human mAbs against the RBS of HA have the potential to be anti-influenza agents with a low propensity for the development of resistant viruses

    Characterization of Oseltamivir-Resistant 2009 H1N1 Pandemic Influenza A Viruses

    Get PDF
    Influenza viruses resistant to antiviral drugs emerge frequently. Not surprisingly, the widespread treatment in many countries of patients infected with 2009 pandemic influenza A (H1N1) viruses with the neuraminidase (NA) inhibitors oseltamivir and zanamivir has led to the emergence of pandemic strains resistant to these drugs. Sporadic cases of pandemic influenza have been associated with mutant viruses possessing a histidine-to-tyrosine substitution at position 274 (H274Y) in the NA, a mutation known to be responsible for oseltamivir resistance. Here, we characterized in vitro and in vivo properties of two pairs of oseltaimivir-sensitive and -resistant (possessing the NA H274Y substitution) 2009 H1N1 pandemic viruses isolated in different parts of the world. An in vitro NA inhibition assay confirmed that the NA H274Y substitution confers oseltamivir resistance to 2009 H1N1 pandemic viruses. In mouse lungs, we found no significant difference in replication between oseltamivir-sensitive and -resistant viruses. In the lungs of mice treated with oseltamivir or even zanamivir, 2009 H1N1 pandemic viruses with the NA H274Y substitution replicated efficiently. Pathological analysis revealed that the pathogenicities of the oseltamivir-resistant viruses were comparable to those of their oseltamivir-sensitive counterparts in ferrets. Further, the oseltamivir-resistant viruses transmitted between ferrets as efficiently as their oseltamivir-sensitive counterparts. Collectively, these data indicate that oseltamivir-resistant 2009 H1N1 pandemic viruses with the NA H274Y substitution were comparable to their oseltamivir-sensitive counterparts in their pathogenicity and transmissibility in animal models. Our findings highlight the possibility that NA H274Y-possessing oseltamivir-resistant 2009 H1N1 pandemic viruses could supersede oseltamivir-sensitive viruses, as occurred with seasonal H1N1 viruses

    Efficacy of the New Neuraminidase Inhibitor CS-8958 against H5N1 Influenza Viruses

    Get PDF
    Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 Β΅g/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants

    Treatment of Highly Pathogenic H7N9 Virus-Infected Mice with Baloxavir Marboxil

    No full text
    Viral neuraminidase inhibitors show limited efficacy in mice infected with H7N9 influenza A viruses isolated from humans. Although baloxavir marboxil protected mice from lethal challenge infection with a low pathogenic avian influenza H7N9 virus isolated from a human, its efficacy in mice infected with a recent highly pathogenic version of H7N9 human isolates is unknown. Here, we examined the efficacy of baloxavir marboxil in mice infected with a highly pathogenic human H7N9 virus, A/Guangdong/17SF003/2016. Treatment of infected mice with a single 1.5 mg/kg dose of baloxavir marboxil protected mice from the highly pathogenic human H7N9 virus infection as effectively as oseltamivir treatment at 50 mg/kg twice a day for five days. Daily treatment for five days at 15 or 50 mg/kg of baloxavir marboxil showed superior therapeutic efficacy, largely preventing virus replication in respiratory organs. These results indicate that baloxavir marboxil is a valuable candidate treatment for human patients suffering from highly pathogenic H7N9 virus infection

    Enhanced Replication of Highly Pathogenic Influenza A(H7N9) Virus in Humans

    No full text
    To clarify the threat posed by emergence of highly pathogenic influenza A(H7N9) virus infection among humans, we characterized the viral polymerase complex. Polymerase basic 2–482R, polymerase basic 2–588V, and polymerase acidic–497R individually or additively enhanced virus polymerase activity, indicating that multiple replication-enhancing mutations in 1 isolate may contribute to virulence
    • …
    corecore