56 research outputs found

    Expression and Ion Transport Activity of Rice OsHKT1;1 Variants

    Get PDF
    OsHKT1;1 in rice, belongs to the high-affinity K+ Transporter family, has been found to be involved in salt tolerance. OsHKT1;1 in japonica rice (Nipponbare) produces mRNA variants, but their functions remain elusive. In salt tolerant rice, Pokkali, eight OsHKT1;1 variants (V1-V8) were identified in addition to the full-length OsHKT1;1 (FL) cDNA. Absolute quantification by qPCR revealed that accumulation of OsHKT1;1-FL mRNA is minor in contrast to that of OsHKT1;1-V1, -V2, -V4, and -V7 mRNAs, all of which are predominant in shoots, while only V1 and V7 mRNAs are predominant in roots. Two electrode voltage clamp (TEVC) experiments using Xenopus laevis oocytes revealed that oocytes-expressing OsHKT1;1-FL from Pokkali exhibited inward-rectified currents in the presence of 96 mM Na+ as reported previously. Further TEVC analyses indicated that six of eight OsHKT1;1 variants elicited currents in a Na+ or a K+ bath solution. OsHKT1;1-V6 exhibited a similar inward rectification to the FL protein. Contrastingly, however, the rests mediated bidirectional currents in both Na+ and K+ bath solutions. These data suggest possibilities that novel mechanisms regulating the transport activity of OsHKT1;1 might exist, and that OsHKT1;1 variants might also carry out distinct physiological roles either independently or in combination with OsHKT1;1-FL

    Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants

    Get PDF
    Elevated Na+ levels in agricultural lands are increasingly becoming a serious threat to the world agriculture. Plants suffer osmotic and ionic stress under high salinity due to the salts accumulated at the outside of roots and those accumulated at the inside of the plant cells, respectively. Mechanisms of salinity tolerance in plants have been extensively studied and in the recent years these studies focus on the function of key enzymes and plant morphological traits. Here, we provide an updated overview of salt tolerant mechanisms in glycophytes with a particular interest in rice (Oryza sativa) plants. Protective mechanisms that prevent water loss due to the increased osmotic pressure, the development of Na+ toxicity on essential cellular metabolisms, and the movement of ions via the apoplastic pathway (i.e. apoplastic barriers) are described here in detail.ArticleRICE. 5:11 (2012)journal articl

    The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit

    Get PDF
    We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO(2) transporter, as well as control the regulation of stomata to water deficits

    Functional characterization of a novel plasma membrane intrinsic protein2 in barley

    Get PDF
    Water homeostasis is crucial to the growth and survival of plants. Plasma membrane intrinsic proteins (PIPs) have been shown to be primary channels mediating water uptake in plant cells. We characterized a novel PIP2 gene, HvPIP2;8 in barley (Hordeum vulgare). HvPIP2;8 shared 72–76% identity with other HvPIP2s and 74% identity with rice OsPIP2;8. The gene was expressed in all organs including the shoots, roots and pistil at a similar level. When HvPIP2;8 was transiently expressed in onion epidermal cells, it was localized to the plasma membrane. HvPIP2;8 showed transport activity for water in Xenopus oocytes, however its interaction with HvPIP1;2 was not observed. These results suggest that HvPIP2;8 plays a role in water homeostasis although further functional analysis is required in future

    Cloning of PCR-Products Encoding Potassium Channel Proteins from Mesembryanthemum crystallinum

    Get PDF
    Gene fragments of potassium channels were cloned from Mesembryanthemum crystallinum by using RT-PCR (reverse transcription-polymerase chain reaction). The two fragments were isolated independently and showed high similarity with each other. About 80% identity was found between the two fragments and potassium-channel genes of Arabidopsis. Southern hybridization indicated that the potassium channel gene may be a single copy gene or that a small gene family of potassium channels exists.耐塩性、耐乾性の極めて高い Mesembryanthemum crystallinum からPCR法を用いてカリウムチャンネル遺伝子断片を得た。2つのクローンが独立に得られたが、互いによく似ていて、シロイヌナズナのカリウムチャンネルとは67から88%の相同性を示した。サザンハイブリダイゼーションの結果から、今回得られた遺伝子はシングルコピーであり、またカリウムチャンネル遺伝子ファミリーが存在する可能性が示唆された

    Identification and Characterization of Rice OsHKT1;3 Variants

    Get PDF
    In rice, the high-affinity K+ transporter, OsHKT1;3, functions as a Na+-selective transporter. mRNA variants of OsHKT1;3 have been reported previously, but their functions remain unknown. In this study, five OsHKT1;3 variants (V1-V5) were identified from japonica rice (Nipponbare) in addition to OsHKT1;3_FL. Absolute quantification qPCR analyses revealed that the transcript level of OsHKT1;3_FL was significantly higher than other variants in both the roots and shoots. Expression levels of OsHKT1;3_FL, and some variants, increased after 24 h of salt stress. Two electrode voltage clamp experiments in a heterologous expression system using Xenopus laevis oocytes revealed that oocytes expressing OsHKT1;3_FL and all of its variants exhibited smaller Na+ currents. The presented data, together with previous data, provide insights to understanding how OsHKT family members are involved in the mechanisms of ion homeostasis and salt tolerance in rice.</p

    Barley plasma membrane intrinsic proteins (PIP aquaporins) as water and CO2 transporters

    Get PDF
    We identified barley aquaporins and demonstrated that one, HvPIP2;1, transports water and CO2. Regarding water homeostasis in plants, regulations of aquaporin expression were observed in many plants under several environmental stresses. Under salt stress, a number of plasma membrane-type aquaporins were down-regulated, which can prevent continuous dehydration resulting in cell death. The leaves of transgenic rice plants that expressed the largest amount of HvPIP2;1 showed a 40% increase in internal CO2 conductance compared with leaves of wild-type rice plants. The rate of CO2 assimilation also increased in the transgenic plants. The goal of our plant aquaporin research is to determine the key aquaporin species responsible for water and CO2 transport, and to improve plant water relations, stress tolerance, CO2 uptake or assimilation, and plant productivity via molecular breeding of aquaporins.</p

    Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    Get PDF
    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation
    corecore