1,257 research outputs found

    Spatial scaling in human peripheral vision

    Get PDF
    The observation that performance in many visual tasks can be made independent of eccentricity by increasing the size of peripheral stimuli according to the cortical magnification factor has dominated studies of peripheral vision for many years. However, it has become evident that the cortical magnification factor cannot be successfully applied to all tasks. To find out why, several tasks were studied using spatial scaling, a method which requires no pre-determined scaling factors (such as those predicted from cortical magnification) to magnify the stimulus at any eccentricity. Instead, thresholds are measured at the fovea and in the periphery using a series of stimuli, all of which are simply magnified versions of one another. Analysis of the data obtained in this way reveals the value of the parameter E2, the eccentricity at which foveal stimulus size must double in order to maintain performance equivalent to that at the fovea. The tasks investigated include hyperacuities (vernier acuity, bisection acuity, spatial interval discrimination, referenced displacement detection, and orientation discrimination), unreferenced instantaneous and gradual movement, flicker sensitivity, and face discrimination. In all cases tasks obeyed the principle of spatial scaling since performance in the periphery could be equated to that at the fovea by appropriate magnification. However, E2 values found for different spatial tasks varied over a 200-fold range. In spatial tasks (e.g. bisection acuity and spatial interval discrimination) E2 values were low, reaching about 0.075 deg, whereas in movement tasks the values could be as high as 16 deg. Using a method of spatial scaling it has been possible to equate foveal and peripheral perfonnance in many diverse visual tasks. The rate at which peripheral stimulus size had to be increased as a function of eccentricity was dependent upon the stimulus conditions and the task itself. Possible reasons for these findings are discussed

    Written medical discharge communication from an acute stroke service: a project to improve content through development of a structured stroke-specific template

    Get PDF
    Specific guidelines for the content of discharge summaries from acute stroke services do not currently exist. The aims of this project were to assess the strengths and weaknesses of stroke discharge communication from Imperial College Healthcare NHS Trust, to develop a structured template to guide completion, and to re-audit discharge communication following its implementation. The audit compared local performance against record standards from the Academy of Medical Royal Colleges (1), which was augmented by criteria generated from the British Association of Stroke Physicians (BASP) Stroke Service Standards (2). Discharge information was examined within the Trust’s Electronic Discharge Communication (EDC) system to determine the recording of selected items for consecutively discharged patients from the hyperacute and acute stroke units. The audit was repeated following implementation of a newly developed stroke-specific discharge summary template. Fifty-one EDC summaries were examined at baseline (July 2012) and 30 summaries at re-audit (January 2013). The criteria which showed low adherence initially and which showed the most significant improvement following the introduction of the template were the guidance on blood pressure and lipids targets (increased from 2% and 0% respectively at baseline, to 93% post intervention), and the driving and flying advice (from 3% to 79%). Documentation was also seen to improve for measures of physical and cognitive function, discharge arrangements, and follow up plans. This audit cycle has demonstrated improvement in the consistency of content within written discharge communication following the introduction of a structured stroke-specific template adhering to combined criteria from identified standards

    Regge calculus from a new angle

    Full text link
    In Regge calculus space time is usually approximated by a triangulation with flat simplices. We present a formulation using simplices with constant sectional curvature adjusted to the presence of a cosmological constant. As we will show such a formulation allows to replace the length variables by 3d or 4d dihedral angles as basic variables. Moreover we will introduce a first order formulation, which in contrast to using flat simplices, does not require any constraints. These considerations could be useful for the construction of quantum gravity models with a cosmological constant.Comment: 8 page

    A next-generation inverse-geometry spallation-driven ultracold neutron source

    Full text link
    The physics model of a next-generation spallation-driven high-current ultracold neutron (UCN) source capable of delivering an extracted UCN rate of around an-order-of-magnitude higher than the strongest proposed sources, and around three-orders-of-magnitude higher than existing sources, is presented. This UCN-current-optimized source would dramatically improve cutting-edge UCN measurements that are currently statistically limited. A novel "Inverse Geometry" design is used with 40 L of superfluid 4^4He (He-II), which acts as a converter of cold neutrons (CNs) to UCNs, cooled with state-of-the-art sub-cooled cryogenic technology to \sim1.6 K. Our design is optimized for a 100 W maximum heat load constraint on the He-II and its vessel. In our geometry, the spallation target is wrapped symmetrically around the UCN converter to permit raster scanning the proton beam over a relatively large volume of tungsten spallation target to reduce the demand on the cooling requirements, which makes it reasonable to assume that water edge-cooling only is sufficient. Our design is refined in several steps to reach PUCN=2.1×109/P_{UCN}=2.1\times10^9\,/s under our other restriction of 1 MW maximum available proton beam power. We then study effects of the He-II scattering kernel as well as reductions in PUCNP_{UCN} due to pressurization to reach PUCN=1.8×109/P_{UCN}=1.8\times10^9\,/s. Finally, we provide a design for the UCN extraction system that takes into account the required He-II heat transport properties and implementation of a He-II containment foil that allows UCN transmission. We estimate a total useful UCN current from our source of Ruse=5×108/R_{use}=5\times10^8\,/s from a 18 cm diameter guide 5 m from the source. Under a conservative "no return" approximation, this rate can produce an extracted density of >1×104/>1\times10^4\,/cm3^3 in <<1000~L external experimental volumes with a 58^{58}Ni (335 neV) cut-off potential.Comment: Submitted to Journal of Applied Physic
    corecore