3 research outputs found

    DISC1 regulates N-methyl-D-aspartate receptor dynamics:abnormalities induced by a Disc1 mutation modelling a translocation linked to major mental illness

    Get PDF
    Abstract The neuromodulatory gene DISC1 is disrupted by a t(1;11) translocation that is highly penetrant for schizophrenia and affective disorders, but how this translocation affects DISC1 function is incompletely understood. N-methyl-D-aspartate receptors (NMDAR) play a central role in synaptic plasticity and cognition, and are implicated in the pathophysiology of schizophrenia through genetic and functional studies. We show that the NMDAR subunit GluN2B complexes with DISC1-associated trafficking factor TRAK1, while DISC1 interacts with the GluN1 subunit and regulates dendritic NMDAR motility in cultured mouse neurons. Moreover, in the first mutant mouse that models DISC1 disruption by the translocation, the pool of NMDAR transport vesicles and surface/synaptic NMDAR expression are increased. Since NMDAR cell surface/synaptic expression is tightly regulated to ensure correct function, these changes in the mutant mouse are likely to affect NMDAR signalling and synaptic plasticity. Consistent with these observations, RNASeq analysis of the translocation carrier-derived human neurons indicates abnormalities of excitatory synapses and vesicle dynamics. RNASeq analysis of the human neurons also identifies many differentially expressed genes previously highlighted as putative schizophrenia and/or depression risk factors through large-scale genome-wide association and copy number variant studies, indicating that the translocation triggers common disease pathways that are shared with unrelated psychiatric patients. Altogether, our findings suggest that translocation-induced disease mechanisms are likely to be relevant to mental illness in general, and that such disease mechanisms include altered NMDAR dynamics and excitatory synapse function. This could contribute to the cognitive disorders displayed by translocation carriers

    Studying the molecular consequences of the t(1;11) balanced translocation using iPSCs derived from carriers and within family controls

    Get PDF
    Schizophrenia is a major psychiatric disorder that affects 1% of the world population and is among the 10 leading worldwide causes of disability. Disrupted-In- Schizophrenia (DISC1) is one of the most studied risk genes for mental illness and is disrupted by a balanced translocation between chromosomes 1 and 11 that co-segregates with major mental illness in a single large Scottish family. DISC1 is a scaffold protein with numerous interactors and has been shown to hold key roles in neuronal progenitor proliferation, migration, cells signalling and synapse formation and maintenance. The studies herein provide the platform in order to investigate the molecular and cellular consequences of the t(1;11) translocation using induced pluripotent stem cells (iPSCs)-derived neural precursor cells and neurons from within-family carriers and controls. Towards this end, several iPSC lines have been converted into neural progenitor cells (NPCs) and differentiated into physiologically active forebrain neurons following well-characterised protocols. These cells were characterised in terms of basic marker expression at each developmental stage. Inter-line variation was observed in all subsequent experiments but overall t(1;11) lines did not generate less neuronal or less proliferating cells compared to control lines. Furthermore, the expression pattern of genes disrupted by the t(1;11) translocation was investigated by RT-qPCR. DISC1 was reduced by ~50% in the translocation lines, both neural precursors and neurons. This observation corresponds to previous findings in lymphoblastoid cell lines (LBCs) derived from members of the same family. Moreover, DISC1 expression was found to increase as neural precursors differentiation to neurons. Two other genes are disrupted by the t(1;11) translocation;DISC2 and DISC1FP1. Their expression was detectable, but below the threshold of quantification. Similarly, DISC1/DISC1FP1 chimeric transcripts corresponding to such transcripts previously identifies in LBCs from the family were detectable, but not quantifiable. A fourth gene, TSNAX, was also investigated because it is located in close proximity to, and undergoes intergenic splicing with, DISC1. Interestingly, TSNAX was found to be altered in some but not all time points studied, in the translocation carriers compared to control lines. In addition to breakpoint gene expression profiling, iPSC-derived material was used to investigate neuronal differentiation. There seemed to be attenuation in BIII-TUBULIN expression at two weeks post-differentiation, while NESTIN, MAP2 and GFAP expression was similar between translocation carrier and control lines at all time points studied. I also had access to targeted mice designed to mimic the derived chromosome 1 of the t(1;11) balanced translocation. Using RT-qPCR Disc1 expression was found to be 50% lower in heterozygous mice compared to wild types, and I detected a similar profile of chimeric transcript expression as detected in translocation carrier-derived LBCs. These observations support my gene expression studies of the human cells and indicate that the iPSC-derived neural precursors and neurons can be studied in parallel with the genome edited mice to obtain meaningful insights into the mechanism by which the t(1;11) translocation confers substantially elevated risk of major mental illness. In conclusion, the studies described in this thesis provide an experimental platform for investigation of the effects of the t(1;11) translocation upon function and gene and protein expression in material derived from translocation carriers and in brain tissue from a corresponding mouse model

    Development and validation of a direct sandwich chemiluminescence immunoassay for measuring DNA adducts of benzo[a]pyrene and other polycyclic aromatic hydrocarbons

    No full text
    We have developed and validated a sandwich chemiluminescence immunoassay (SCIA) which measures polycyclic aromatic hydrocarbon (PAH)–DNA adducts combining high throughput and adequate sensitivity, appropriate for evaluation of adduct levels in human population studies. Fragmented DNA is incubated with rabbit antiserum elicited against DNA modified with r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and subsequently trapped by goat anti-rabbit IgG bound to a solid surface. Anti-single-stranded (ss) DNA antibodies binds in a quantity proportional to the adduct levels and is detected by chemiluminescence. The BPDE–DNA SCIA has a limit of detection of 3 adducts per 10(9) nucleotides with 5 μg DNA per well. We have validated the BPDE–DNA SCIA using DNA modified in vitro, DNA from benzo[a]pyrene (BP)-exposed cultured cells and mice. The levels of adduct measured by SCIA were lower (30–60%) than levels of bulky DNA adducts measured in the same samples by (32)P-postlabelling. The BPDE–DNA SCIA also detected adducts produced in vivo by PAHs other than BP. When blood DNA samples from maternal/infant pairs were assayed by BPDE–DNA SCIA, the adduct levels obtained were significantly correlated. However, there was no correlation between (32)P-postlabelling and SCIA values for the same samples. The SCIA can be extended to any DNA adduct and is expected to provide, when fully automated, a valuable high-throughput approach in large-scale population studies
    corecore