71 research outputs found
Sensitive detection of photoexcited carriers by resonant tunneling through a single quantum dot
We show that the resonant tunnel current through a single energy level of an
individual quantum dot within an ensemble of dots is strongly sensitive to
photoexcited holes that become bound in the close vicinity of the dot. The
presence of these holes lowers the electrostatic energy of the quantum dot
state and switches the current carrying channel from fully open to fully closed
with a high on/off ratio (> 50). The device can be reset by means of a bias
voltage pulse. These properties are of interest for charge sensitive photon
counting devices.Comment: 5 pages, 4 figure
Controlling high-frequency collective electron dynamics via single-particle complexity
We demonstrate, through experiment and theory, enhanced high-frequency
current oscillations due to magnetically-induced conduction resonances in
superlattices. Strong increase in the ac power originates from complex
single-electron dynamics, characterized by abrupt resonant transitions between
unbound and localized trajectories, which trigger and shape propagating charge
domains. Our data demonstrate that external fields can tune the collective
behavior of quantum particles by imprinting configurable patterns in the
single-particle classical phase space.Comment: 5 pages, 4 figure
Recommended from our members
Linear magnetoresistance due to multiple-electron scattering by low-mobility islands in an inhomogeneous conductor
Linear transverse magnetoresistance is commonly observed in many material systems including semimetals, narrow band-gap semiconductors, multi-layer graphene and topological insulators. It can originate in an inhomogeneous conductor from distortions in the current paths induced by macroscopic spatial fluctuations in the carrier mobility and it has been explained using a phenomenological semiclassical random resistor network model. However, the link between the linear magnetoresistance and the microscopic nature of the electron dynamics remains unknown. Here we demonstrate how the linear magnetoresistance arises from the stochastic behaviour of the electronic cycloidal trajectories around low-mobility islands in high-mobility inhomogeneous conductors and that this process is only weakly affected by the applied electric field strength. Also, we establish a quantitative link between the island morphology and the strength of linear magnetoresistance of relevance for future applications
Tunable spectral response by hydrogen irradiation of Ga(AsN) superlattice diodes
We report on the tuning of the spectral response of superlattice (SL) diodes based on dilute nitride Ga(AsN) alloys by post-growth hydrogenation. Hydrogen is incorporated into the superlattice where it neutralizes the electronic activity of nitrogen by forming N-H complexes. We exploit the controlled thermal dissociation of the complexes to tune the energy of the SL photocurrent absorption and electroluminescence emission; also, by annealing a submicron spot with a focused laser beam we create a preferential path for the injection of carriers, thus activating a nanoscale light emitting region. This method can be used for fabricating planar diode arrays with distinct optical active regions, all integrated onto a single substrate.
This work was supported by the University of Nottingham, the EU (under Grant Agreement No. PIEF-GA-2010-272612), the Italian MIUR (under FIRB 2012 project DeLIGHTeD, prot. RBFR12RS1W), and the EPSRC. We acknowledge useful discussions with Professor Mario Capizzi and Professor Antonio Polimeni (Sapienza Università di Roma)
Microscopic analysis of the valence band and impurity band theories of (Ga,Mn)As
We analyze microscopically the valence and impurity band models of
ferromagnetic (Ga,Mn)As. We find that the tight-binding Anderson approach with
conventional parameterization and the full potential LDA+U calculations give a
very similar picture of states near the Fermi energy which reside in an
exchange-split sp-d hybridized valence band with dominant orbital character of
the host semiconductor; this microscopic spectral character is consistent with
the physical premise of the k.p kinetic-exchange model. On the other hand, the
various models with a band structure comprising an impurity band detached from
the valence band assume mutually incompatible microscopic spectral character.
By adapting the tight-binding Anderson calculations individually to each of the
impurity band pictures in the single Mn impurity limit and then by exploring
the entire doping range we find that a detached impurity band does not persist
in any of these models in ferromagnetic (Ga,Mn)As.Comment: 29 pages, 25 figure
Quantum confined acceptors and donors in InSe nanosheets
We report on the radiative recombination of photo-excited carriers bound at native donors and acceptors in exfoliated nanoflakes of nominally undoped rhombohedral gamma-polytype InSe. The binding energies of these states are found to increase with the decrease in flake thickness, L. We model their dependence on L using a two-dimensional hydrogenic model for impurities and show that they are strongly sensitive to the position of the impurities within the nanolayer. (c) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License
- …