3 research outputs found

    Impact of Artificial Infiltration on the Removal of Nonsteroidal Anti-Inflammatory Drugs during Treatment of Surface Water

    No full text
    The content of pharmaceuticals in natural waters is steadily increasing. Especially nonsteroidal anti-inflammatory drugs (NSAIDs) are often detected in natural waters due to their widespread use. This group of compounds includes commonly used representatives, such as paracetamol and ketoprofen. The quality of natural waters determines the processes applied for the treatment of drinking water. The methods used in order to remove pharmaceuticals from treated water include adsorption and biologically active filtration. Both processes also occur during artificial infiltration (forced flow of intake surface water through the ground to the collecting wells) at surface water intakes. The processes, which occur in the soil, change the water quality characteristics to a great extent. The goal of the study was to evaluate the removal efficiency of paracetamol and ketoprofen in the process of artificial infiltration used as a pre-treatment of surface water. The studies were conducted at a field experimental installation located at the technical artificial infiltration intake. The experimental installation consisted of three metering wells (piezometers) which were located on the way between the bank of the infiltration pond and the collecting well. The collected water samples allowed to evaluate the change of selected NSAIDs concentrations during the passage of water through the ground. The analysis procedure included solid phase extraction (SPE) and high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Removal of the studied NSAIDs in the infiltration process occurred with variable effectiveness throughout the year. Paracetamol was removed with annual efficiency equal to 42%, although no significant removal of ketoprofen was observed

    Impact of Artificial Infiltration on the Removal of Nonsteroidal Anti-Inflammatory Drugs during Treatment of Surface Water

    No full text
    The content of pharmaceuticals in natural waters is steadily increasing. Especially nonsteroidal anti-inflammatory drugs (NSAIDs) are often detected in natural waters due to their widespread use. This group of compounds includes commonly used representatives, such as paracetamol and ketoprofen. The quality of natural waters determines the processes applied for the treatment of drinking water. The methods used in order to remove pharmaceuticals from treated water include adsorption and biologically active filtration. Both processes also occur during artificial infiltration (forced flow of intake surface water through the ground to the collecting wells) at surface water intakes. The processes, which occur in the soil, change the water quality characteristics to a great extent. The goal of the study was to evaluate the removal efficiency of paracetamol and ketoprofen in the process of artificial infiltration used as a pre-treatment of surface water. The studies were conducted at a field experimental installation located at the technical artificial infiltration intake. The experimental installation consisted of three metering wells (piezometers) which were located on the way between the bank of the infiltration pond and the collecting well. The collected water samples allowed to evaluate the change of selected NSAIDs concentrations during the passage of water through the ground. The analysis procedure included solid phase extraction (SPE) and high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Removal of the studied NSAIDs in the infiltration process occurred with variable effectiveness throughout the year. Paracetamol was removed with annual efficiency equal to 42%, although no significant removal of ketoprofen was observed

    Redefining the purpose, goals and methods of disinfection in contemporary water supply systems

    No full text
    This paper presents a new concept of disinfection traditionally applied in water treatment systems. The new definition of this process results from the change in its functionality, aims and methods, which guarantee high quality of water supply. The literature review and technical practice demonstrate a demand for disinfection to act as a functional element of the integrated water distribution system and an active intermediate link between the technology of water treatment and the water distribution network. The presented concept of a disinfection process enables evaluation of water treatment, increases its effectiveness in integrated water treatment systems. Such defined disinfection addresses water conservation and its biological stability within the water supply network. The presented here new concept of disinfection assigns its new role and function in the integrated water distribution system. The controlling and diagnostic function of the disinfection defined in the paper provides a transparent and comprehensive method, with considerable application in experimental design, as well as practical solutions for integrated water distribution systems
    corecore