6,098 research outputs found

    Relativistic Compact Objects in Isotropic Coordinates

    Full text link
    We present a matrix method for obtaining new classes of exact solutions for Einstein's equations representing static perfect fluid spheres. By means of a matrix transformation, we reduce Einstein's equations to two independent Riccati type differential equations for which three classes of solutions are obtained. One class of the solutions corresponding to the linear barotropic type fluid with an equation of state p=γρp=\gamma \rho is discussed in detail.Comment: 9 pages, no figures, accepted for publication in Pramana-Journal of Physic

    Renormalization Group Approach to Causal Viscous Cosmological Models

    Full text link
    The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type Universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, of the causal evolution equation of the bulk viscous pressure and of the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale invariant fixed point, therefore obtaining the long time behavior of the scale factor.Comment: 19 pages. RevTeX4. Revised version. Accepted in Classical and Quantum Gravit

    Viscous Bianchi type I universes in brane cosmology

    Get PDF
    We consider the dynamics of a viscous cosmological fluid in the generalized Randall-Sundrum model for an anisotropic, Bianchi type I brane. To describe the dissipative effects we use the Israel-Hiscock-Stewart full causal thermodynamic theory. By assuming that the matter on the brane obeys a linear barotropic equation of state, and the bulk viscous pressure has a power law dependence on the energy density, the general solution of the field equations can be obtained in an exact parametric form. The obtained solutions describe generally a non-inflationary brane world. In the large time limit the brane Universe isotropizes, ending in an isotropic and homogeneous state. The evolution of the temperature and of the comoving entropy of the Universe is also considered, and it is shown that due to the viscous dissipative processes a large amount of entropy is created in the early stages of evolution of the brane world.Comment: 13 pages, 5 figures, to appear in Class. Quantum Gra

    Modeling usual and unusual anisotropic spheres

    Full text link
    In this paper, we study anisotropic spheres built from known static spherical solutions. In particular, we are interested in the physical consequences of a "small" departure from a physically sensible configuration. The obtained solutions smoothly depend on free parameters. By setting these parameters to zero, the starting seed solution is regained. We apply our procedure in detail by taking as seed solutions the Florides metrics, and the Tolman IV solution. We show that the chosen Tolman IV, and also Heint IIa Durg IV,V perfect fluid solutions, can be used to generate a class of parametric solutions where the anisotropic factor has features recalling boson stars. This is an indication that boson stars could emerge by "perturbing" appropriately a perfect fluid solution (at least for the seed metrics considered). Finally, starting with Tolman IV, Heint IIa and Durg IV,V solutions, we build anisotropic gravastar-like sources with the appropriate boundary conditions.Comment: Final version published in IJMP

    Multilevel blocking approach to the fermion sign problem in path-integral Monte Carlo simulations

    Full text link
    A general algorithm toward the solution of the fermion sign problem in finite-temperature quantum Monte Carlo simulations has been formulated for discretized fermion path integrals with nearest-neighbor interactions in the Trotter direction. This multilevel approach systematically implements a simple blocking strategy in a recursive manner to synthesize the sign cancellations among different fermionic paths throughout the whole configuration space. The practical usefulness of the method is demonstrated for interacting electrons in a quantum dot.Comment: 4 pages RevTeX, incl. two figure

    Vacuum solutions of the gravitational field equations in the brane world model

    Get PDF
    We consider some classes of solutions of the static, spherically symmetric gravitational field equations in the vacuum in the brane world scenario, in which our Universe is a three-brane embedded in a higher dimensional space-time. The vacuum field equations on the brane are reduced to a system of two ordinary differential equations, which describe all the geometric properties of the vacuum as functions of the dark pressure and dark radiation terms (the projections of the Weyl curvature of the bulk, generating non-local brane stresses). Several classes of exact solutions of the vacuum gravitational field equations on the brane are derived. In the particular case of a vanishing dark pressure the integration of the field equations can be reduced to the integration of an Abel type equation. A perturbative procedure, based on the iterative solution of an integral equation, is also developed for this case. Brane vacuums with particular symmetries are investigated by using Lie group techniques. In the case of a static vacuum brane admitting a one-parameter group of conformal motions the exact solution of the field equations can be found, with the functional form of the dark radiation and pressure terms uniquely fixed by the symmetry. The requirement of the invariance of the field equations with respect to the quasi-homologous group of transformations also imposes a unique, linear proportionality relation between the dark energy and dark pressure. A homology theorem for the static, spherically symmetric gravitational field equations in the vacuum on the brane is also proven.Comment: 13 pages, no figures, to appear in PR

    Stochastic Cutoff Method for Long-Range Interacting Systems

    Full text link
    A new Monte-Carlo method for long-range interacting systems is presented. This method consists of eliminating interactions stochastically with the detailed balance condition satisfied. When a pairwise interaction VijV_{ij} of a NN-particle system decreases with the distance as rijαr_{ij}^{-\alpha}, computational time per one Monte Carlo step is O(N){\cal O}(N) for αd\alpha \ge d and O(N2α/d){\cal O}(N^{2-\alpha/d}) for α<d\alpha < d, where dd is the spatial dimension. We apply the method to a two-dimensional magnetic dipolar system. The method enables us to treat a huge system of 2562256^2 spins with reasonable computational time, and reproduces a circular order originated from long-range dipolar interactions.Comment: 18 pages, 9 figures, 1 figure and 1 reference are adde

    Chaplygin gas dominated anisotropic brane world cosmological models

    Get PDF
    We present exact solutions of the gravitational field equations in the generalized Randall-Sundrum model for an anisotropic brane with Bianchi type I geometry, with a generalized Chaplygin gas as matter source. The generalized Chaplygin gas, which interpolates between a high density relativistic era and a non-relativistic matter phase, is a popular dark energy candidate. For a Bianchi type I space-time brane filled with a cosmological fluid obeying the generalized Chaplygin equation of state the general solution of the gravitational field equations can be expressed in an exact parametric form, with the comoving volume taken as parameter. In the limiting cases of a stiff cosmological fluid, with pressure equal to the energy density, and for a pressureless fluid, the solution of the field equations can be expressed in an exact analytical form. The evolution of the scalar field associated to the Chaplygin fluid is also considered and the corresponding potential is obtained. The behavior of the observationally important parameters like shear, anisotropy and deceleration parameter is considered in detail.Comment: 13 pages, 6 figures, accepted for publication in PR
    corecore