6,098 research outputs found
Relativistic Compact Objects in Isotropic Coordinates
We present a matrix method for obtaining new classes of exact solutions for
Einstein's equations representing static perfect fluid spheres. By means of a
matrix transformation, we reduce Einstein's equations to two independent
Riccati type differential equations for which three classes of solutions are
obtained. One class of the solutions corresponding to the linear barotropic
type fluid with an equation of state is discussed in detail.Comment: 9 pages, no figures, accepted for publication in Pramana-Journal of
Physic
Renormalization Group Approach to Causal Viscous Cosmological Models
The renormalization group method is applied to the study of homogeneous and
flat Friedmann-Robertson-Walker type Universes, filled with a causal bulk
viscous cosmological fluid. The starting point of the study is the
consideration of the scaling properties of the gravitational field equations,
of the causal evolution equation of the bulk viscous pressure and of the
equations of state. The requirement of scale invariance imposes strong
constraints on the temporal evolution of the bulk viscosity coefficient,
temperature and relaxation time, thus leading to the possibility of obtaining
the bulk viscosity coefficient-energy density dependence. For a cosmological
model with bulk viscosity coefficient proportional to the Hubble parameter, we
perform the analysis of the renormalization group flow around the scale
invariant fixed point, therefore obtaining the long time behavior of the scale
factor.Comment: 19 pages. RevTeX4. Revised version. Accepted in Classical and Quantum
Gravit
Viscous Bianchi type I universes in brane cosmology
We consider the dynamics of a viscous cosmological fluid in the generalized
Randall-Sundrum model for an anisotropic, Bianchi type I brane. To describe the
dissipative effects we use the Israel-Hiscock-Stewart full causal thermodynamic
theory. By assuming that the matter on the brane obeys a linear barotropic
equation of state, and the bulk viscous pressure has a power law dependence on
the energy density, the general solution of the field equations can be obtained
in an exact parametric form. The obtained solutions describe generally a
non-inflationary brane world. In the large time limit the brane Universe
isotropizes, ending in an isotropic and homogeneous state. The evolution of the
temperature and of the comoving entropy of the Universe is also considered, and
it is shown that due to the viscous dissipative processes a large amount of
entropy is created in the early stages of evolution of the brane world.Comment: 13 pages, 5 figures, to appear in Class. Quantum Gra
Modeling usual and unusual anisotropic spheres
In this paper, we study anisotropic spheres built from known static spherical
solutions. In particular, we are interested in the physical consequences of a
"small" departure from a physically sensible configuration. The obtained
solutions smoothly depend on free parameters. By setting these parameters to
zero, the starting seed solution is regained. We apply our procedure in detail
by taking as seed solutions the Florides metrics, and the Tolman IV solution.
We show that the chosen Tolman IV, and also Heint IIa Durg IV,V perfect fluid
solutions, can be used to generate a class of parametric solutions where the
anisotropic factor has features recalling boson stars. This is an indication
that boson stars could emerge by "perturbing" appropriately a perfect fluid
solution (at least for the seed metrics considered). Finally, starting with
Tolman IV, Heint IIa and Durg IV,V solutions, we build anisotropic
gravastar-like sources with the appropriate boundary conditions.Comment: Final version published in IJMP
Multilevel blocking approach to the fermion sign problem in path-integral Monte Carlo simulations
A general algorithm toward the solution of the fermion sign problem in
finite-temperature quantum Monte Carlo simulations has been formulated for
discretized fermion path integrals with nearest-neighbor interactions in the
Trotter direction. This multilevel approach systematically implements a simple
blocking strategy in a recursive manner to synthesize the sign cancellations
among different fermionic paths throughout the whole configuration space. The
practical usefulness of the method is demonstrated for interacting electrons in
a quantum dot.Comment: 4 pages RevTeX, incl. two figure
Vacuum solutions of the gravitational field equations in the brane world model
We consider some classes of solutions of the static, spherically symmetric
gravitational field equations in the vacuum in the brane world scenario, in
which our Universe is a three-brane embedded in a higher dimensional
space-time. The vacuum field equations on the brane are reduced to a system of
two ordinary differential equations, which describe all the geometric
properties of the vacuum as functions of the dark pressure and dark radiation
terms (the projections of the Weyl curvature of the bulk, generating non-local
brane stresses). Several classes of exact solutions of the vacuum gravitational
field equations on the brane are derived. In the particular case of a vanishing
dark pressure the integration of the field equations can be reduced to the
integration of an Abel type equation. A perturbative procedure, based on the
iterative solution of an integral equation, is also developed for this case.
Brane vacuums with particular symmetries are investigated by using Lie group
techniques. In the case of a static vacuum brane admitting a one-parameter
group of conformal motions the exact solution of the field equations can be
found, with the functional form of the dark radiation and pressure terms
uniquely fixed by the symmetry. The requirement of the invariance of the field
equations with respect to the quasi-homologous group of transformations also
imposes a unique, linear proportionality relation between the dark energy and
dark pressure. A homology theorem for the static, spherically symmetric
gravitational field equations in the vacuum on the brane is also proven.Comment: 13 pages, no figures, to appear in PR
Stochastic Cutoff Method for Long-Range Interacting Systems
A new Monte-Carlo method for long-range interacting systems is presented.
This method consists of eliminating interactions stochastically with the
detailed balance condition satisfied. When a pairwise interaction of a
-particle system decreases with the distance as ,
computational time per one Monte Carlo step is for
and for , where is the spatial
dimension. We apply the method to a two-dimensional magnetic dipolar system.
The method enables us to treat a huge system of spins with reasonable
computational time, and reproduces a circular order originated from long-range
dipolar interactions.Comment: 18 pages, 9 figures, 1 figure and 1 reference are adde
Chaplygin gas dominated anisotropic brane world cosmological models
We present exact solutions of the gravitational field equations in the
generalized Randall-Sundrum model for an anisotropic brane with Bianchi type I
geometry, with a generalized Chaplygin gas as matter source. The generalized
Chaplygin gas, which interpolates between a high density relativistic era and a
non-relativistic matter phase, is a popular dark energy candidate. For a
Bianchi type I space-time brane filled with a cosmological fluid obeying the
generalized Chaplygin equation of state the general solution of the
gravitational field equations can be expressed in an exact parametric form,
with the comoving volume taken as parameter. In the limiting cases of a stiff
cosmological fluid, with pressure equal to the energy density, and for a
pressureless fluid, the solution of the field equations can be expressed in an
exact analytical form. The evolution of the scalar field associated to the
Chaplygin fluid is also considered and the corresponding potential is obtained.
The behavior of the observationally important parameters like shear, anisotropy
and deceleration parameter is considered in detail.Comment: 13 pages, 6 figures, accepted for publication in PR
- …