3 research outputs found

    A Deep Learning Synthetic Likelihood Approximation of a Non-stationary Spatial Model for Extreme Streamflow Forecasting

    Full text link
    Extreme streamflow is a key indicator of flood risk, and quantifying the changes in its distribution under non-stationary climate conditions is key to mitigating the impact of flooding events. We propose a non-stationary process mixture model (NPMM) for annual streamflow maxima over the central US (CUS) which uses downscaled climate model precipitation projections to forecast extremal streamflow. Spatial dependence for the model is specified as a convex combination of transformed Gaussian and max-stable processes, indexed by a weight parameter which identifies the asymptotic regime of the process. The weight parameter is modeled as a function of the annual precipitation for each of the two hydrologic regions within the CUS, introducing spatio-temporal non-stationarity within the model. The NPMM is flexible with desirable tail dependence properties, but yields an intractable likelihood. To address this, we embed a neural network within a density regression model which is used to learn a synthetic likelihood function using simulations from the NPMM with different parameter settings. Our model is fitted using observational data for 1972--2021, and inference carried out in a Bayesian framework. The two regions within the CUS are estimated to be in different asymptotic regimes based on the posterior distribution of the weight parameter. Annual streamflow maxima estimates based on global climate models for two representative climate pathway scenarios suggest an overall increase in the frequency and magnitude of extreme streamflow for 2006-2035 compared to the historical period of 1972-2005

    Stochastic Precipitation Generation for the Chesapeake Bay Watershed using Hidden Markov Models with Variational Bayes Parameter Estimation

    Full text link
    Stochastic precipitation generators (SPGs) are a class of statistical models which generate synthetic data that can simulate dry and wet rainfall stretches for long durations. Generated precipitation time series data are used in climate projections, impact assessment of extreme weather events, and water resource and agricultural management. We construct an SPG for daily precipitation data that is specified as a semi-continuous distribution at every location, with a point mass at zero for no precipitation and a mixture of two exponential distributions for positive precipitation. Our generators are obtained as hidden Markov models (HMMs) where the underlying climate conditions form the states. We fit a 3-state HMM to daily precipitation data for the Chesapeake Bay watershed in the Eastern coast of the USA for the wet season months of July to September from 2000--2019. Data is obtained from the GPM-IMERG remote sensing dataset, and existing work on variational HMMs is extended to incorporate semi-continuous emission distributions. In light of the high spatial dimension of the data, a stochastic optimization implementation allows for computational speedup. The most likely sequence of underlying states is estimated using the Viterbi algorithm, and we are able to identify differences in the weather regimes associated with the states of the proposed model. Synthetic data generated from the HMM can reproduce monthly precipitation statistics as well as spatial dependency present in the historical GPM-IMERG data

    Semiparametric Estimation of the Shape of the Limiting Multivariate Point Cloud

    Full text link
    We propose a model to flexibly estimate joint tail properties by exploiting the convergence of an appropriately scaled point cloud onto a compact limit set. Characteristics of the shape of the limit set correspond to key tail dependence properties. We directly model the shape of the limit set using B\'ezier splines, which allow flexible and parsimonious specification of shapes in two dimensions. We then fit the B\'ezier splines to data in pseudo-polar coordinates using Markov chain Monte Carlo, utilizing a limiting approximation to the conditional likelihood of the radii given angles. By imposing appropriate constraints on the parameters of the B\'ezier splines, we guarantee that each posterior sample is a valid limit set boundary, allowing direct posterior analysis of any quantity derived from the shape of the curve. Furthermore, we obtain interpretable inference on the asymptotic dependence class by using mixture priors with point masses on the corner of the unit box. Finally, we apply our model to bivariate datasets of extremes of variables related to fire risk and air pollution
    corecore