6,032 research outputs found

    Universal canonical black hole entropy

    Full text link
    Non-rotating black holes in three and four dimensions are shown to possess a canonical entropy obeying the Bekenstein-Hawking area law together with a leading correction (for large horizon areas) given by the logarithm of the area with a {\it universal} finite negative coefficient, provided one assumes that the quantum black hole mass spectrum has a power law relation with the quantum area spectrum found in Non-perturbative Canonical Quantum General Relativity. The thermal instability associated with asymptotically flat black holes appears in the appropriate domain for the index characterising this power law relation, where the canonical entropy (free energy) is seen to turn complex.Comment: Revtex, 5 pages, no figures. Typos corrected and a footnote and some references adde

    A simple functional form for proton-208{}^{208}Pb total reaction cross sections

    Get PDF
    A simple functional form has been found that gives a good representation of the total reaction cross sections for the scattering from 208{}^{208}Pb of protons with energies in the range 30 to 300 MeV.Comment: 7 pages, 2 figure

    Spectroscopic Constants of Molecules III. Regularities in Vibration Frequencies in a Molecular Group

    Get PDF

    Spectroscopic Constants of Molecules I on the Ground State Frequencies of Diatoms of the Type XX

    Get PDF

    Effect of blend composition on tensile properties of blended Dref-III yarns

    Get PDF
    Blended Dref-III yarns have been prepared by using same stock of blended materials (polyester-viscose) both in core and sheath. Stress-strain curves of both fibre and yarn (100% polyester and viscose) have been used for the prediction of both ring and Dref-III spun blended yarn strength. Hamburger model using yarn stress-strain curves for blended ring-spun yarn has been found suitable to predict the tensile strength of blended Dref-III yarns for different core-sheath ratios separately. From this observation, an equation has also been derived to predict the strength of blended Dref-III yarn for all types of combinations of core and sheath components as well as blend composition

    Magnetic Order Beyond RKKY in the Classical Kondo Lattice

    Full text link
    We study the Kondo lattice model of band electrons coupled to classical spins, in three dimensions, using a combination of variational calculation and Monte Carlo. We use the weak coupling `RKKY' window and the strong coupling regime as benchmarks, but focus on the physically relevant intermediate coupling regime. Even for modest electron-spin coupling the phase boundaries move away from the RKKY results, the non interacting Fermi surface no longer dictates magnetic order, and weak coupling `spiral' phases give way to collinear order. We use these results to revisit the classic problem of 4f magnetism and demonstrate how both electronic structure and coupling effects beyond RKKY control the magnetism in these materials.Comment: 6 pages, 4 figs. Improved figures, expanded captions. To appear in Europhys. Let

    Time dependent spectral modeling of Markarian 421 during a violent outburst in 2010

    Full text link
    We present the results of extensive modeling of the spectral energy distributions (SEDs) of the closest blazar (z=0.031) Markarian 421 (Mrk 421) during a giant outburst in February 2010. The source underwent rapid flux variations in both X-rays and very high energy (VHE) gamma-rays as it evolved from a low-flux state on 2010 February 13-15 to a high-flux state on 2010 February 17. During this period, the source exhibited significant spectral hardening from X-rays to VHE gamma-rays while exhibiting a "harder when brighter" behavior in these energy bands. We reproduce the broadband SED using a time-dependent multi-zone leptonic jet model with radiation feedback. We find that an injection of the leptonic particle population with a single power-law energy distribution at shock fronts followed by energy losses in an inhomogeneous emission region is suitable for explaining the evolution of Mrk 421 from low- to high-flux state in February 2010. The spectral states are successfully reproduced by a combination of a few key physical parameters, such as the maximum &\& minimum cutoffs and power-law slope of the electron injection energies, magnetic field strength, and bulk Lorentz factor of the emission region. The simulated light curves and spectral evolution of Mrk 421 during this period imply an almost linear correlation between X-ray flux at 1-10 keV energies and VHE gamma-ray flux above 200 GeV, as has been previously exhibited by this source. Through this study, a general trend that has emerged for the role of physical parameters is that, as the flare evolves from a low- to a high-flux state, higher bulk kinetic energy is injected into the system with a harder particle population and a lower magnetic field strength.Comment: 13 pages, 5 figures, accepted for publication in MNRA
    corecore