8,697 research outputs found
Generalized Hawking-Page Phase Transition
The issue of radiant spherical black holes being in stable thermal
equilibrium with their radiation bath is reconsidered. Using a simple
equilibrium statistical mechanical analysis incorporating Gaussian thermal
fluctuations in a canonical ensemble of isolated horizons, the heat capacity is
shown to diverge at a critical value of the classical mass of the isolated
horizon, given (in Planckian units) by the {\it microcanonical} entropy
calculated using Loop Quantum Gravity. The analysis reproduces the Hawking-Page
phase transition discerned for anti-de Sitter black holes and generalizes it in
the sense that nowhere is any classical metric made use of.Comment: 9 Pages, Latex with 2 eps figure
Exact Persistence Exponent for One-dimensional Potts Models with Parallel Dynamics
We obtain \theta_p(q) = 2\theta_s(q) for one-dimensional q-state
ferromagnetic Potts models evolving under parallel dynamics at zero temperature
from an initially disordered state, where \theta_p(q) is the persistence
exponent for parallel dynamics and \theta_s(q) = -{1/8}+
\frac{2}{\pi^2}[cos^{-1}{(2-q)/q\sqrt{2}}]^2 [PRL, {\bf 75}, 751, (1995)], the
persistence exponent under serial dynamics. This result is a consequence of an
exact, albeit non-trivial, mapping of the evolution of configurations of Potts
spins under parallel dynamics to the dynamics of two decoupled reaction
diffusion systems.Comment: 13 pages Latex file, 5 postscript figure
Cosmic optical activity from an inhomogeneous Kalb-Ramond field
The effects of introducing a harmonic spatial inhomogeneity into the
Kalb-Ramond field, interacting with the Maxwell field according to a
`string-inspired' proposal made in earlier work are investigated. We examine in
particular the effects on the polarization of synchrotron radiation from
cosmologically distant (i.e. of redshift greater than 2) galaxies, as well as
the relation between the electric and magnetic components of the radiation
field. The rotation of the polarization plane of linearly polarized radiation
is seen to acquire an additional contribution proportional to the square of the
frequency of the dual Kalb-Ramond axion wave, assuming that it is far smaller
compared to the frequency of the radiation field.Comment: 9 pages, Revtex, no figure
Maximum Distance Between the Leader and the Laggard for Three Brownian Walkers
We consider three independent Brownian walkers moving on a line. The process
terminates when the left-most walker (the `Leader') meets either of the other
two walkers. For arbitrary values of the diffusion constants D_1 (the Leader),
D_2 and D_3 of the three walkers, we compute the probability distribution
P(m|y_2,y_3) of the maximum distance m between the Leader and the current
right-most particle (the `Laggard') during the process, where y_2 and y_3 are
the initial distances between the leader and the other two walkers. The result
has, for large m, the form P(m|y_2,y_3) \sim A(y_2,y_3) m^{-\delta}, where
\delta = (2\pi-\theta)/(\pi-\theta) and \theta =
cos^{-1}(D_1/\sqrt{(D_1+D_2)(D_1+D_3)}. The amplitude A(y_2,y_3) is also
determined exactly
The role of electron-hole recombination in organic magnetoresistance
Magneto-electrical measurements were performed on diodes and bulk
heterojunction solar cells (BHSCs) to clarify the role of formation of
coulombically bound electron-hole (e-h) pairs on the magnetoresistance (MR)
response in organic thin film devices. BHSCs are suitable model systems because
they effectively quench excitons but the probability of forming e-h pairs in
them can be tuned over orders of magnitude by the choice of material and
solvent in the blend. We have systematically varied the e-h recombination
coefficients, which are directly proportional to the probability for the charge
carriers to meet in space, and found that a reduced probability of electrons
and holes meeting in space lead to disappearance of the MR. Our results clearly
show that MR is a direct consequence of e-h pair formation. We also found that
the MR line shape follows a power law-dependence of B0.5 at higher fields
Universal canonical black hole entropy
Non-rotating black holes in three and four dimensions are shown to possess a
canonical entropy obeying the Bekenstein-Hawking area law together with a
leading correction (for large horizon areas) given by the logarithm of the area
with a {\it universal} finite negative coefficient, provided one assumes that
the quantum black hole mass spectrum has a power law relation with the quantum
area spectrum found in Non-perturbative Canonical Quantum General Relativity.
The thermal instability associated with asymptotically flat black holes appears
in the appropriate domain for the index characterising this power law relation,
where the canonical entropy (free energy) is seen to turn complex.Comment: Revtex, 5 pages, no figures. Typos corrected and a footnote and some
references adde
- …