2 research outputs found

    Synergistic effect of acetic acid and NOXfor objects made of lead and its alloys; Indoor corrosive environments in museums and depositories

    Get PDF
    Complex corrosion simulation to evaluate synergistic effect have to cover large number of factors. To do so, environmental and corrosion datasets collected by monitoring sites of interest have been used to tailor complex artificial ageing of lead and lead alloys, using lead, tin and tin-lead coupons. Material composition was based on objects of interest which are tin-lead alloy based although naming lead objects is used widespread for vast of them. To evaluate results corrosion rate based on weight loss, phase composition of corrosion product and colour change of the coupon surface were utilized. For thin corrosion layers formed micro Raman and FTIR did not provide suitable results, and GIXRD have been used. Although limited number of conditions were used for the simulations, synergistic effect was observed for lead under specific conditions. Synergistic effect do occur on lead when exposed to NOX and acetic acid fumes of relatively low concentrations (18 μg·m-3 and 500 ppb respectively). In addition, there is grouping of colourimetric data collected according to test regimes-phase composition of corrosion product respectively. This information albeit preliminary suggests that colourimetric spectroscopy may be suitable as fast and easy corrosion monitoring

    Cracking of ferritic stainless steel tubes during production process

    No full text
    From the economic reasons many products originally made from austenite stainless steel are nowadays made from ferritic stainless steel. Ferritic steels have relatively low yield strength and the work hardening is limited. They cannot be hardened by heat treatment and only moderately hardened by cold working. Commercially made stainless steel tubes from ferritic steel, used for industrial plumbing was examined on presence of cracks. The cracking was present on the inner side of the convoluted tube shape. The tube manufacturing process consisted of continual bending of the sheet to tube shape, weld the tube, then of cold shaping by pulling through rib-forming frames, which is done in several steps. Then thermal treatment applies to the nearly finished product to remove stress remaining in the structure. Prime suspect was deformation beyond the ductility of used material. However the stress-strain tensile testing does not approved this hypothesis. Several samples of failed material were taken together with reference, and were examined by optical microscopy, and X-Ray Diffraction structure analysis. The structure of the cracked tubes does not show the signs of deformation over the limit, except the location near to the crack itself. Interestingly enough the failed material showed more homogenous structure than the original one. Needle like structures were found when the material is "overetched", on these structures concentration of stress under bending occur. This structure was identified as - ferrite however its presence in -ferrite matrix is unclear
    corecore