15 research outputs found

    Acoustic Voice and Speech Biomarkers of Treatment Status during Hospitalization for Acute Decompensated Heart Failure

    Get PDF
    This study investigates acoustic voice and speech features as biomarkers for acute decompensated heart failure (ADHF), a serious escalation of heart failure symptoms including breathlessness and fatigue. ADHF-related systemic fluid accumulation in the lungs and laryngeal tissues is hypothesized to affect phonation and respiration for speech. A set of daily spoken recordings from 52 patients undergoing inpatient ADHF treatment was analyzed to identify voice and speech biomarkers for ADHF and to examine the trajectory of biomarkers during treatment. Results indicated that speakers produce more stable phonation, a more creaky voice, faster speech rates, and longer phrases after ADHF treatment compared to their pre-treatment voices. This project builds on work to develop a method of monitoring ADHF using speech biomarkers and presents a more detailed understanding of relevant voice and speech features

    Polymeric Nanoparticle PET/MR Imaging Allows Macrophage Detection in Atherosclerotic Plaques

    Get PDF
    Author Manuscript 2013 March 02.Rationale: Myeloid cell content in atherosclerotic plaques associates with rupture and thrombosis. Thus, imaging of lesional monocytes and macrophages could serve as a biomarker of disease progression and therapeutic intervention. Objective: To noninvasively assess plaque inflammation with dextran nanoparticle (DNP)-facilitated hybrid positron emission tomography/magnetic resonance imaging (PET/MRI). Methods and Results: Using clinically approved building blocks, we systematically developed 13-nm polymeric nanoparticles consisting of cross-linked short chain dextrans, which were modified with desferoxamine for zirconium-89 radiolabeling ([superscript 89]Zr-DNP) and a near-infrared fluorochrome (VT680) for microscopic and cellular validation. Flow cytometry of cells isolated from excised aortas showed DNP uptake predominantly in monocytes and macrophages (76.7%) and lower signal originating from other leukocytes, such as neutrophils and lymphocytes (11.8% and 0.7%, P<0.05 versus monocytes and macrophages). DNP colocalized with the myeloid cell marker CD11b on immunohistochemistry. PET/MRI revealed high uptake of [superscript 89]Zr-DNP in the aortic root of apolipoprotein E knock out (ApoE[superscript −/−]) mice (standard uptake value, ApoE[superscript −/−] mice versus wild-type controls, 1.9±0.28 versus 1.3±0.03; P<0.05), corroborated by ex vivo scintillation counting and autoradiography. Therapeutic silencing of the monocyte-recruiting receptor C-C chemokine receptor type 2 with short-interfering RNA decreased [superscript 89]Zr-DNP plaque signal (P<0.05) and inflammatory gene expression (P<0.05). Conclusions: Hybrid PET/MRI with a 13-nm DNP enables noninvasive assessment of inflammation in experimental atherosclerotic plaques and reports on therapeutic efficacy of anti-inflammatory therapy.National Heart, Lung, and Blood InstituteNational Institutes of Health (U.S.). Dept. of Health and Human Services (HHSN268201000044C)National Institutes of Health (U.S.). Dept. of Health and Human Services (R01-HL096576)National Institutes of Health (U.S.). Dept. of Health and Human Services (R01-HL095629)National Institutes of Health (U.S.). Dept. of Health and Human Services (T32-HL094301

    Monocyte-Directed RNAi Targeting CCR2 Improves Infarct Healing in Atherosclerosis-Prone Mice

    Get PDF
    Background—Exaggerated and prolonged inflammation after myocardial infarction (MI) accelerates left ventricular remodeling. Inflammatory pathways may present a therapeutic target to prevent post-MI heart failure. However, the appropriate magnitude and timing of interventions are largely unknown, in part because noninvasive monitoring tools are lacking. Here, we used nanoparticle-facilitated silencing of CCR2, the chemokine receptor that governs inflammatory Ly-6Chigh monocyte subset traffic, to reduce infarct inflammation in apolipoprotein E–deficient (apoE−/−) mice after MI. We used dual-target positron emission tomography/magnetic resonance imaging of transglutaminase factor XIII (FXIII) and myeloperoxidase (MPO) activity to monitor how monocyte subset–targeted RNAi altered infarct inflammation and healing. Methods and Results—Flow cytometry, gene expression analysis, and histology revealed reduced monocyte numbers and enhanced resolution of inflammation in infarcted hearts of apoE−/− mice that were treated with nanoparticle-encapsulated siRNA. To follow extracellular matrix cross-linking noninvasively, we developed a fluorine-18–labeled positron emission tomography agent (18F-FXIII). Recruitment of MPO-rich inflammatory leukocytes was imaged with a molecular magnetic resonance imaging sensor of MPO activity (MPO-Gd). Positron emission tomography/magnetic resonance imaging detected anti-inflammatory effects of intravenous nanoparticle-facilitated siRNA therapy (75% decrease of MPO-Gd signal; P<0.05), whereas 18F-FXIII positron emission tomography reflected unimpeded matrix cross-linking in the infarct. Silencing of CCR2 during the first week after MI improved ejection fraction on day 21 after MI from 29% to 35% (P<0.05). Conclusion—CCR2-targeted RNAi reduced recruitment of Ly-6Chigh monocytes, attenuated infarct inflammation, and curbed post-MI left ventricular remodeling.National Heart, Lung, and Blood InstituteUnited States. Dept. of Health and Human Services (contract No. HHSN268201000044C)National Institutes of Health (U.S.) (grant R01-HL096576)National Institutes of Health (U.S.) (grant R01-HL095629)National Institutes of Health (U.S.) (grant T32-HL094301)Deutsche Forschungsgemeinschaft (HE-6382/1-1

    Acoustic Voice and Speech Biomarkers of Treatment Status during Hospitalization for Acute Decompensated Heart Failure

    No full text
    This study investigates acoustic voice and speech features as biomarkers for acute decompensated heart failure (ADHF), a serious escalation of heart failure symptoms including breathlessness and fatigue. ADHF-related systemic fluid accumulation in the lungs and laryngeal tissues is hypothesized to affect phonation and respiration for speech. A set of daily spoken recordings from 52 patients undergoing inpatient ADHF treatment was analyzed to identify voice and speech biomarkers for ADHF and to examine the trajectory of biomarkers during treatment. Results indicated that speakers produce more stable phonation, a more creaky voice, faster speech rates, and longer phrases after ADHF treatment compared to their pre-treatment voices. This project builds on work to develop a method of monitoring ADHF using speech biomarkers and presents a more detailed understanding of relevant voice and speech features

    Acoustic Voice and Speech Biomarkers of Treatment Status during Hospitalization for Acute Decompensated Heart Failure

    No full text
    This study investigates acoustic voice and speech features as biomarkers for acute decompensated heart failure (ADHF), a serious escalation of heart failure symptoms including breathlessness and fatigue. ADHF-related systemic fluid accumulation in the lungs and laryngeal tissues is hypothesized to affect phonation and respiration for speech. A set of daily spoken recordings from 52 patients undergoing inpatient ADHF treatment was analyzed to identify voice and speech biomarkers for ADHF and to examine the trajectory of biomarkers during treatment. Results indicated that speakers produce more stable phonation, a more creaky voice, faster speech rates, and longer phrases after ADHF treatment compared to their pre-treatment voices. This project builds on work to develop a method of monitoring ADHF using speech biomarkers and presents a more detailed understanding of relevant voice and speech features

    Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin - Efficacy of recoupling nitric oxide synthase as a therapeutic strategy

    No full text
    Background-Sustained pressure overload induces pathological cardiac hypertrophy and dysfunction. Oxidative stress linked to nitric oxide synthase (NOS) uncoupling may play an important role. We tested whether tetrahydrobiopterin (BH4) can recouple NOS and reverse preestablished advanced hypertrophy, fibrosis, and dysfunction. Methods and Results-C57/Bl6 mice underwent transverse aortic constriction for 4 weeks, increasing cardiac mass (190%) and diastolic dimension (144%), lowering ejection fraction (-46%), and triggering NOS uncoupling and oxidative stress. Oral BH4 was then administered for 5 more weeks of pressure overload. Without reducing loading, BH4 reversed hypertrophy and fibrosis, recoupled endothelial NOS, lowered oxidant stress, and improved chamber and myocyte function, whereas untreated hearts worsened. If BH4 was started at the onset of pressure overload, it did not suppress hypertrophy over the first week when NOS activity remained preserved even in untreated transverse aortic constriction hearts. However, BH4 stopped subsequent remodeling when NOS activity was otherwise declining. A broad antioxidant, Tempol, also reduced oxidant stress yet did not recouple NOS or reverse worsened hypertrophy/fibrosis from sustained transverse aortic constriction. Microarray analysis revealed very different gene expression profiles for both treatments. BH4 did not enhance net protein kinase G activity. Finally, transgenic mice with enhanced BH4 synthesis confined to endothelial cells were unprotected against pressure overload, indicating that exogenous BH4 targeted myocytes and fibroblasts. Conclusions-NOS recoupling by exogenous BH4 ameliorates preexisting advanced cardiac hypertrophy/fibrosis and is more effective than a less targeted antioxidant approach (Tempol). These data highlight the importance of myocyte NOS uncoupling in hypertrophic heart disease and support BH4 as a potential new approach to treat this disorder

    Corrie Health Digital Platform for Self-Management in Secondary Prevention After Acute Myocardial Infarction.

    No full text
    BACKGROUND: Unplanned readmissions after hospitalization for acute myocardial infarction are among the leading causes of preventable morbidity, mortality, and healthcare costs. Digital health interventions could be an effective tool in promoting self-management, adherence to guideline-directed therapy, and cardiovascular risk reduction. A digital health intervention developed at Johns Hopkins-the Corrie Health Digital Platform (Corrie)-includes the first cardiology Apple CareKit smartphone application, which is paired with an Apple Watch and iHealth Bluetooth-enabled blood pressure cuff. Corrie targets: (1) self-management of cardiac medications, (2) self-tracking of vital signs, (3) education about cardiovascular disease through articles and animated videos, and (4) care coordination that includes outpatient follow-up appointments. METHODS AND RESULTS: The 3 phases of the MiCORE study (Myocardial infarction, Combined-device, Recovery Enhancement) include (1) the development of Corrie, (2) a pilot study to assess the usability and feasibility of Corrie, and (3) a prospective research study to primarily compare time to first readmission within 30 days postdischarge among patients with Corrie to patients in the historical standard of care comparison group. In Phase 2, the feasibility of deploying Corrie in an acute care setting was established among a sample of 60 patients with acute myocardial infarction. Phase 3 is ongoing and patients from 4 hospitals are being enrolled as early as possible during their hospital stay if they are 18 years or older, admitted with acute myocardial infarction (ST-segment-elevation myocardial infarction or type I non-ST-segment-elevation myocardial infarction), and own a smartphone. Patients are either being enrolled with their own personal devices or they are provided an iPhone and/or Apple Watch for the duration of the study. Phase 3 started in October 2017 and we aim to recruit 140 participants. CONCLUSIONS: This article will provide an in-depth understanding of the feasibility associated with implementing a digital health intervention in an acute care setting and the potential of Corrie as a self-management tool for acute myocardial infarction recovery
    corecore