174 research outputs found

    Complete determination of the reflection coefficient in neutron specular reflection by absorptive non-magnetic media

    Full text link
    An experimental method is proposed which allows the complete determination of the complex reflection coefficient for absorptive media for positive and negative values of the momenta. It makes use of magnetic reference layers and is a modification of a recently proposed technique for phase determination based on polarization measurements. The complex reflection coefficient resulting from a simulated application of the method is used for a reconstruction of the scattering density profiles of absorptive non-magnetic media by inversion.Comment: 14 pages, 4 figures, reformulation of abstract, ref.12 added, typographical correction

    Magnetic-crystallographic phase diagram of superconducting parent compound Fe1+x_{1+x}Te

    Full text link
    hrough neutron diffraction experiments, including spin-polarized measurements, we find a collinear incommensurate spin-density wave with propagation vector k= \mathbf k = (0.4481(4)  0  120.4481(4) \, \,0 \, \, \frac1 2) at base temperature in the superconducting parent compound Fe1+x_{1+x}Te. This critical concentration of interstitial iron corresponds to x≈12x \approx 12% and leads crystallographic phase separation at base temperature. The spin-density wave is short-range ordered with a correlation length of 22(3) \AA, and as the ordering temperature is approached its propagation vector decreases linearly in the H-direction and becomes long-range ordered. Upon further populating the interstitial iron site, the spin-density wave gives way to an incommensurate helical ordering with propagation vector k= \mathbf k = (0.3855(2)  0  120.3855(2) \, \,0 \, \, \frac1 2) at base temperature. For a sample with x≈9(1)x \approx 9(1) %, we also find an incommensurate spin-density wave that competes with the bicollinear commensurate ordering close to the N\'eel point. The shifting of spectral weight between competing magnetic orderings observed in several samples is supporting evidence for the phase separation being electronic in nature, and hence leads to crystallographic phase separation around the critical interstitial iron concentration of 12%. With results from both powder and single crystal samples, we construct a magnetic-crystallographic phase diagram of Fe1+x_{1+x}Te for $ 5% < x <17%

    Magnetic Structure in Fe/Sm-Co Exchange Spring Bilayers with Intermixed Interfaces

    Full text link
    The depth profile of the intrinsic magnetic properties in an Fe/Sm-Co bilayer fabricated under nearly optimal spring-magnet conditions was determined by complementary studies of polarized neutron reflectometry and micromagnetic simulations. We found that at the Fe/Sm-Co interface the magnetic properties change gradually at the length scale of 8 nm. In this intermixed interfacial region, the saturation magnetization and magnetic anisotropy are lower and the exchange stiffness is higher than values estimated from the model based on a mixture of Fe and Sm-Co phases. Therefore, the intermixed interface yields superior exchange coupling between the Fe and Sm-Co layers, but at the cost of average magnetization.Comment: 16 pages, 6 figures and 1 tabl

    AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    No full text
    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Ã…(-1). A detailed description of this flexible instrument and its performance characteristics in various operating modes are given.D. J. M. is supported through a NSF NIRT grant Contract No. 0304062

    Magnetic excitations in Dy/Y superlattices as seen via inelastic neutron scattering

    Get PDF
    Measurements of the spin excitations propagating normal to the interfaces in Dy/Y superlattices using neutron inelastic scattering are presented. For a given magnon momentum, a neutron-scattering spectrum shows multiple peaks at different energies, which indicates discrete energy spectra. The results are compared with theoretical calculations developed here to describe magnetic excitations in rare-earth superlattices. The theory accounts for Ruderman-Kittel-Kasuya-Yosida (RKKY) and Dzyaloshinsky-Moriya interactions in incommensurate helicoidal structures and achieves a quantitative agreement with the experimental data. This work demonstrates that neutron inelastic scattering can be used for systematic studies of the exchange interactions and spin dynamics in nanomagnetic systems over wide areas of the Brillouin zone

    The High-Flux Backscattering Spectrometer at the NIST Center for Neutron Research

    Full text link
    We describe the design and current performance of the high-flux backscattering spectrometer located at the NIST Center for Neutron Research. The design incorporates several state-of-the-art neutron optical devices to achieve the highest flux on sample possible while maintaining an energy resolution of less than 1mueV. Foremost among these is a novel phase-space transformation chopper that significantly reduces the mismatch between the beam divergences of the primary and secondary parts of the instrument. This resolves a long-standing problem of backscattering spectrometers, and produces a relative gain in neutron flux of 4.2. A high-speed Doppler-driven monochromator system has been built that is capable of achieving energy transfers of up to +-50mueV, thereby extending the dynamic range of this type of spectrometer by more than a factor of two over that of other reactor-based backscattering instruments
    • …
    corecore