174 research outputs found
Complete determination of the reflection coefficient in neutron specular reflection by absorptive non-magnetic media
An experimental method is proposed which allows the complete determination of
the complex reflection coefficient for absorptive media for positive and
negative values of the momenta. It makes use of magnetic reference layers and
is a modification of a recently proposed technique for phase determination
based on polarization measurements. The complex reflection coefficient
resulting from a simulated application of the method is used for a
reconstruction of the scattering density profiles of absorptive non-magnetic
media by inversion.Comment: 14 pages, 4 figures, reformulation of abstract, ref.12 added,
typographical correction
Magnetic-crystallographic phase diagram of superconducting parent compound FeTe
hrough neutron diffraction experiments, including spin-polarized
measurements, we find a collinear incommensurate spin-density wave with
propagation vector () at base
temperature in the superconducting parent compound FeTe. This critical
concentration of interstitial iron corresponds to and leads
crystallographic phase separation at base temperature. The spin-density wave is
short-range ordered with a correlation length of 22(3) \AA, and as the ordering
temperature is approached its propagation vector decreases linearly in the
H-direction and becomes long-range ordered. Upon further populating the
interstitial iron site, the spin-density wave gives way to an incommensurate
helical ordering with propagation vector () at base temperature. For a sample with , we
also find an incommensurate spin-density wave that competes with the
bicollinear commensurate ordering close to the N\'eel point. The shifting of
spectral weight between competing magnetic orderings observed in several
samples is supporting evidence for the phase separation being electronic in
nature, and hence leads to crystallographic phase separation around the
critical interstitial iron concentration of 12%. With results from both powder
and single crystal samples, we construct a magnetic-crystallographic phase
diagram of FeTe for $ 5% < x <17%
Magnetic Structure in Fe/Sm-Co Exchange Spring Bilayers with Intermixed Interfaces
The depth profile of the intrinsic magnetic properties in an Fe/Sm-Co bilayer
fabricated under nearly optimal spring-magnet conditions was determined by
complementary studies of polarized neutron reflectometry and micromagnetic
simulations. We found that at the Fe/Sm-Co interface the magnetic properties
change gradually at the length scale of 8 nm. In this intermixed interfacial
region, the saturation magnetization and magnetic anisotropy are lower and the
exchange stiffness is higher than values estimated from the model based on a
mixture of Fe and Sm-Co phases. Therefore, the intermixed interface yields
superior exchange coupling between the Fe and Sm-Co layers, but at the cost of
average magnetization.Comment: 16 pages, 6 figures and 1 tabl
AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences
An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Ã…(-1). A detailed description of this flexible instrument and its performance characteristics in various operating modes are given.D. J. M. is supported
through a NSF NIRT grant Contract No. 0304062
Magnetic excitations in Dy/Y superlattices as seen via inelastic neutron scattering
Measurements of the spin excitations propagating normal to the interfaces in Dy/Y superlattices using neutron inelastic scattering are presented. For a given magnon momentum, a neutron-scattering spectrum shows multiple peaks at different energies, which indicates discrete energy spectra. The results are compared with theoretical calculations developed here to describe magnetic excitations in rare-earth superlattices. The theory accounts for Ruderman-Kittel-Kasuya-Yosida (RKKY) and Dzyaloshinsky-Moriya interactions in incommensurate helicoidal structures and achieves a quantitative agreement with the experimental data. This work demonstrates that neutron inelastic scattering can be used for systematic studies of the exchange interactions and spin dynamics in nanomagnetic systems over wide areas of the Brillouin zone
The High-Flux Backscattering Spectrometer at the NIST Center for Neutron Research
We describe the design and current performance of the high-flux
backscattering spectrometer located at the NIST Center for Neutron Research.
The design incorporates several state-of-the-art neutron optical devices to
achieve the highest flux on sample possible while maintaining an energy
resolution of less than 1mueV. Foremost among these is a novel phase-space
transformation chopper that significantly reduces the mismatch between the beam
divergences of the primary and secondary parts of the instrument. This resolves
a long-standing problem of backscattering spectrometers, and produces a
relative gain in neutron flux of 4.2. A high-speed Doppler-driven monochromator
system has been built that is capable of achieving energy transfers of up to
+-50mueV, thereby extending the dynamic range of this type of spectrometer by
more than a factor of two over that of other reactor-based backscattering
instruments
- …