32 research outputs found

    Approximate Graph Laplacians for Multimodal Data Clustering

    No full text

    Rough-Fuzzy Clustering for Grouping Functionally Similar Genes from Microarray Data

    No full text

    Rough-fuzzy clustering and unsupervised feature selection for wavelet based MR image segmentation.

    No full text
    Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices

    Feature Selection Using f-Information Measures in Fuzzy Approximation Spaces

    No full text
    Abstract—The selection of nonredundant and relevant features of real-valued data sets is a highly challenging problem. A novel feature selection method is presented here based on fuzzy-rough sets by maximizing the relevance and minimizing the redundancy of the selected features. By introducing the fuzzy equivalence partition matrix, a novel representation of Shannon’s entropy for fuzzy approximation spaces is proposed to measure the relevance and redundancy of features suitable for real-valued data sets. The fuzzy equivalence partition matrix also offers an efficient way to calculate many more information measures, termed as f-information measures. Several f-information measures are shown to be effective for selecting nonredundant and relevant features of real-valued data sets. This paper compares the performance of different f-information measures for feature selection in fuzzy approximation spaces. Some quantitative indexes are introduced based on fuzzy-rough sets for evaluating the performance of proposed method. The effectiveness of the proposed method, along with a comparison with other methods, is demonstrated on a set of real-life data sets. Index Terms—Pattern recognition, data mining, feature selection, fuzzy-rough sets, f-information measures. Ç

    RFCM: a hybrid clustering algorithm using rough and fuzzy sets

    No full text
    A hybrid unsupervised learning algorithm, termed as rough-fuzzy c-means, is proposed in this paper. It comprises a judicious integration of the principles of rough sets and fuzzy sets. While the concept of lower and upper approximations of rough sets deals with uncertainty, vagueness, and incompleteness in class definition, the membership function of fuzzy sets enables efficient handling of overlapping partitions. The concept of crisp lower bound and fuzzy boundary of a class, introduced in rough-fuzzy c-means, enables efficient selection of cluster prototypes. Several quantitative indices are introduced based on rough sets for evaluating the performance of the proposed c-means algorithm. The effectiveness of the algorithm, along with a comparison with other algorithms, has been demonstrated on a set of real life data sets
    corecore