304 research outputs found

    Process Standardization for the Manufacture of Shrikhand Spread

    Get PDF
    Purpose: Shrikhand Spread, a unique sweetened fermented Indian milk product is made by separation of whey from dahi, the Indian counterpart of Western yoghurt, followed by addition of sugar. Production of dahi employing traditional method involved undefined mixed starter cultures, uncontrolled fermentation and longer production time resulting in wide variation in its chemical and microbiological qualities. In order to cater to a product with desirable properties like lower post-acidification, higher flavour profile, firm body and lower syneresis coupled with shorter production time, conjugated application of yoghurt cultures and dahi cultures were tried. Since the shelf-life of dahi is limited, conversion into shrikhand spread may be used as a tool to extend the shelf-life and therefore the market reach towards commercialization into the global market as a potential functional food.Design/Methodology/Approach: Different batches of dahi were made from homogenized (Stage I - 2500 psi, Stage II - 500 psi) and pasteurized (74-78 °C/16-19 Sec) milk, pre-adjusted to 3.15-3.20% fat and 11.40% snf with diverse starter combinations selected upon the extent of post acidification, volatile acid production, syneresis and rheological characteristics. Homogenized, pasteurized and regulated milk was further subjected to a heat-treatment (90°C/10 min) and seeded with selected starter combinations to obtain firm curd intended for shrikhand spread manufacture. Shelf-life of shrikhand spread was evaluated in terms of chemical and microbiological criteria upto 7 days of storage at 8±1°C.Findings: Starter combination of eXactDahi 2+YoFlex Express 1.0 at an incubation temperature-time combination of 45°C/5h was found most suitable for producing dahi with smooth body, higher volatile acidity and low syneresis. Utilization of dahi obtained employing the above starter combination for the manufacture shrikhand spread was suggested and the product was found to retain its goodness when stored for 7 days at 8±1°C. Originality/Value: Conjugated use of yoghurt cultures with dahi cultures was suggested to overcome the drawbacks of traditional process of dahi manufacture suitable for conversion into shrikhand spread. This dahi was found capable of enhancing its dietetic value in addition

    Hamilton-Jacobi Tunneling Method for Dynamical Horizons in Different Coordinate Gauges

    Full text link
    Previous work on dynamical black hole instability is further elucidated within the Hamilton-Jacobi method for horizon tunneling and the reconstruction of the classical action by means of the null-expansion method. Everything is based on two natural requirements, namely that the tunneling rate is an observable and therefore it must be based on invariantly defined quantities, and that coordinate systems which do not cover the horizon should not be admitted. These simple observations can help to clarify some ambiguities, like the doubling of the temperature occurring in the static case when using singular coordinates, and the role, if any, of the temporal contribution of the action to the emission rate. The formalism is also applied to FRW cosmological models, where it is observed that it predicts the positivity of the temperature naturally, without further assumptions on the sign of the energy.Comment: Standard Latex document, typos corrected, refined discussion of tunneling picture, subsection 5.1 remove

    Observation of Dirac-like surface state bands on the top surface of BiSe

    Full text link
    Two quintuple layers of strong topological insulator Bi2Se3 are coupled by a Bi bilayer in BiSe crystal. We investigated its electronic structure using angle resolved photoelectron spectroscopy to study its topological nature. Dirac like linearly dispersive surface state bands are observed on the 001 surface of BiSe and Sb doped BiSe, similar to Bi2Se3. Moreover, the lower part of the SSBs buries deep in the bulk valence band. Overlap region between the SSBs and BVB is large in Sb doped system and the SSBs deviate from the Dirac like linear dispersion in this region. These results highlight the role of interlayer coupling between the Bi bilayer and the Bi2Se3 QLs. Furthermore, we observed a large intensity imbalance in the SSBs located at the positive and negative k parallel directions. This asymmetry pattern gradually reverses as the excitation energy scans from low 14eV to high 34eV value. However, we did not observe signal of surface magnetization resulting from the intensity imbalance in SSBs due to hole-generated uncompensated spin accumulation in the photoexcitation process. The main reason for this could be the faster relaxation process for photo hole due to the presence of the Bi bilayer between the adjacent Bi2Se3 QLs. The observed photon energy dependent intensity variation could be a signature of the mixing between the spin and the orbit texture of the SSBs

    Logarithmic corrections to black hole and black ring entropy in tunneling approach

    Full text link
    The tunneling approach beyond semiclassical approximation has been used to calculate the corrected Hawking temperature and entropy for various black holes and FRW universe model. We examine their derivations, and prove that the quantity HH in the corrected temperature is the explicit function of the only free parameter A\mathcal{A} (which is an auxiliary parameter defined by A=SBH\mathcal{A}=\hbar S_{BH}). Our analysis improves previous calculations, and indicates that the leading order logarithmic correction to entropy is a natural result of the corrected temperature and the first law of thermodynamics. Additionally, we apply the tunneling approach beyond semiclassical approximation to neutral black rings. Based on the analysis, we show that the entropy of neutral black rings also has a logarithmic leading order correction.Comment: 13 pages, rewritte

    Crypto-Harmonic Oscillator in Higher Dimensions: Classical and Quantum Aspects

    Full text link
    We study complexified Harmonic Oscillator models in two and three dimensions. Our work is a generalization of the work of Smilga \cite{sm} who initiated the study of these Crypto-gauge invariant models that can be related to PTPT-symmetric models. We show that rotational symmetry in higher spatial dimensions naturally introduces more constraints, (in contrast to \cite{sm} where one deals with a single constraint), with a much richer constraint structure. Some common as well as distinct features in the study of the same Crypto-oscillator in different dimensions are revealed. We also quantize the two dimensional Crypto-oscillator.Comment: 17 pages, Latex, enlarges version, added ref.s., accepted in J.Phys.A, slight alteration in reference section and text, matches journal versio

    Band Structure of Topological Insulator BiSbTe1.25Se1.75

    Full text link
    We present our angle resolved photoelectron spectroscopy (ARPES) and density functional theory results on quaternary topological insulator (TI) BiSbTe1.25Se1.75 (BSTS) confirming the non-trivial topology of the surface state bands (SSBs) in this compound. We find that the SSBs, which are are sensitive to the atomic composition of the terminating surface have a partial 3D character. Our detailed study of the band bending (BB) effects shows that in BSTS the Dirac point (DP) shifts by more than two times compared to that in Bi2Se3 to reach the saturation. The stronger BB in BSTS could be due to the difference in screening of the surface charges. From momentum density curves (MDCs) of the ARPES data we obtained an energy dispersion relation showing the warping strength of the Fermi surface in BSTS to be intermediate between those found in Bi2Se3 and Bi2Te3 and also to be tunable by controlling the ratio of chalcogen/pnictogen atoms. Our experiments also reveal that the nature of the BB effects are highly sensitive to the exposure of the fresh surface to various gas species. These findings have important implications in the tuning of DP in TIs for technological applications

    On the phase identification of dc magnetron sputtered Pt-Ru alloy thin films

    Get PDF
    The microstructure and the electronic work function of Pt-Ru alloy thin films spanning the compositional range from pure Pt to pure Ru were investigated. Nominally 50 nm thick films were cosputtered from elemental targets in an ultrahigh vacuum chamber. X-ray reflectivity and Rutherford backscattering spectroscopy were used to determine the film thicknesses and compositions. The electronic work function of the alloy film samples was determined by analysis of the capacitance-voltage characteristics of films deposited as part of a metal-oxide-semiconductor capacitor structure and found to range from 4.8 eV for pure Ru to 5.2 eV for pure Pt. To better understand the variation in work function for the intermediate compositions, the films were characterized by transmission electron microscopy and x-ray and electron diffractions. A notable increase in the compositional range of the hexagonal close packed (hcp) phase was observed, suggesting a metastable extension of the hcp phase stability as compared to bulk Pt-Ru alloys. The steepest change in the electronic work function for the intermediate alloy compositions coincided with a rapid change in the c/a ratio of the hcp phase. (c) 2008 American Vacuum Society

    Quantum Tunneling, Blackbody Spectrum and Non-Logarithmic Entropy Correction for Lovelock Black Holes

    Full text link
    We show, using the tunneling method, that Lovelock black holes Hawking radiate with a perfect blackbody spectrum. This is a new result. Within the semiclassical (WKB) approximation the temperature of the spectrum is given by the semiclassical Hawking temperature. Beyond the semiclassical approximation the thermal nature of the spectrum does not change but the temperature undergoes some higher order corrections. This is true for both black hole (event) and cosmological horizons. Using the first law of thermodynamics the black hole entropy is calculated. Specifically the DD-dimensional static, chargeless black hole solutions which are spherically symmetric and asymptotically flat, AdS or dS are considered. The interesting property of these black holes is that their semiclassical entropy does not obey the Bekenstein-Hawking area law. It is found that the leading correction to the semiclassical entropy for these black holes is not logarithmic and next to leading correction is also not inverse of horizon area. This is in contrast to the black holes in Einstein gravity. The modified result is due to the presence of Gauss-Bonnet term in the Lovelock Lagrangian. For the limit where the coupling constant of the Gauss-Bonnet term vanishes one recovers the known correctional terms as expected in Einstein gravity. Finally we relate the coefficient of the leading (non-logarithmic) correction with the trace anomaly of the stress tensor.Comment: minor modifications, two new references added, LaTeX, JHEP style, 34 pages, no figures, to appear in JHE

    Quantum corrections and black hole spectroscopy

    Full text link
    In the work \cite{BRM,RBE}, black hole spectroscopy has been successfully reproduced in the tunneling picture. As a result, the derived entropy spectrum of black hole in different gravity (including Einstein's gravity, Einstein-Gauss-Bonnet gravity and Ho\v{r}ava-Lifshitz gravity) are all evenly spaced, sharing the same forms as Sn=nS_n=n, where physical process is only confined in the semiclassical framework. However, the real physical picture should go beyond the semiclassical approximation. In this case, the physical quantities would undergo higher-order quantum corrections, whose effect on different gravity shares in different forms. Motivated by these facts, in this paper we aim to observe how quantum corrections affect black hole spectroscopy in different gravity. The result shows that, in the presence of higher-order quantum corrections, black hole spectroscopy in different gravity still shares the same form as Sn=nS_n=n, further confirming the entropy quantum is universal in the sense that it is not only independent of black hole parameters, but also independent of higher-order quantum corrections. This is a desiring result for the forthcoming quantum gravity theory.Comment: 14 pages, no figure, use JHEP3.cls. to be published in JHE

    Entropy spectrum of a Kerr anti-de Sitter black hole

    Full text link
    The entropy spectrum of a spherically symmetric black hole was derived without the quasinormal modes in the work of Majhi and Vagenas. Extending this work to rotating black holes, we quantize the entropy and the horizon area of a Kerr anti-de Sitter black hole by two methods. The spectra of entropy and area are obtained via the Bohr-Sommerfeld quantization rule and the adiabatic invariance in the first way. By addressing the wave function of emitted (absorbed) particles, the entropy and the area are quantized in the second one. Both results show that the entropy and the area spectra are equally spaced.Comment: Accepted for publication in The European Physical Journal C, Volume 72, Issue
    corecore