1 research outputs found

    Identification and Application of Corrosion Inhibiting Long- Chain Primary Alkyl Amines in Water Treatment in the Power Industry

    Get PDF
    Gas chromatography with flame-ionization detection (FID) and gas chromatography-mass spectrometry (GC/MS) with electron impact ionization (EI) and chemical ionization (PCI and NCI) were successfully used for separation and identification of commercially available longchain primary alkyl amines. The investigated compounds were used as corrosion inhibiting and antifouling agents in a water-steam circuit of energy systems in the power industry. Solidphase extraction (SPE) with octadecyl bonded silica (C18) sorbents followed by gas chromatography were used for quantification of the investigated Primene JM-Tâ„¢ alkyl amines in boiler water, condensate and superheated steam samples from the power plant. Amine formulations from Kotamina group favor formation of protective layers on internal surfaces and keep them free from corrosion and scale. Alkyl amines contained in those formulations both render the environment alkaline and limit the corrosion impact of ionic and gaseous impurities by formation of protective layers. Moreover, alkyl amines limit scaling on heating surfaces of boilers and in turbine, ensuring failure-free operation. Application of alkyl amine formulation enhances heat exchange during boiling and condensation processes. Alkyl amines with branched structure are more thermally stable than linear alkyl amines, exhibit better adsorption and effectiveness of surface shielding. As a result, application of thermostable long-chain branched alkyl amines increases the efficiency of anti-corrosive protection. Moreover, the concentration of ammonia content in water and in steam was also considerably decreased
    corecore