2 research outputs found

    Retinal Ganglion Cell Function and Perfusion following Intraocular Pressure Reduction with Preservative-Free Latanoprost in Patients with Glaucoma and Ocular Hypertension

    No full text
    (1) Background: Given the global prevalence of glaucoma and the crucial role of intraocular pressure (IOP) reduction in the management of the disease, understanding the immediate effects on retinal structure and function is essential. (2) Methods: This study aimed to assess the effects of preservative-free latanoprost on morphological and functional parameters in treatment-naïve patients with ocular hypertension and open-angle glaucoma. (3) Results: This study showed a significant reduction in IOP by an average of 30.6% after treatment with preservative-free latanoprost. Despite the significant reduction in IOP, no statistically significant changes were observed in the electroretinogram (ERG) nor the optical coherence tomography/angiography (OCT/OCTA) parameters compared to baseline. An exploration of the correlation between IOP changes and various parameters revealed a significant association solely with the macular IPL/INL plexus vessel density (VD) measured with OCTA. (4) Conclusions: This finding suggests a possible association between IOP reduction and changes in the macular microcirculation and provides valuable insights into the differential effects of latanoprost. Acknowledging the study limitations, this study emphasizes the need for larger, longer-term investigations to comprehensively assess the sustained effects of preservative-free latanoprost on both IOP and retinal parameters. In addition, exploring systemic factors and conducting subgroup analyses could improve personalized approaches to glaucoma treatment

    The Relative Preservation of the Central Retinal Layers in Leber Hereditary Optic Neuropathy

    No full text
    (1) Background: The purpose of this study was to evaluate the thickness of retinal layers in Leber hereditary optic neuropathy (LHON) in the atrophic stage compared with presumably inherited bilateral optic neuropathy of unknown cause with the aim of seeing if any LHON-specific patterns exist. (2) Methods: 14 patients (24 eyes) with genetically confirmed LHON (LHON group) were compared with 13 patients (23 eyes) with negative genetic testing results (mtDNA + WES) and without identified etiology of bilateral optic atrophy (nonLHON group). Segmentation analysis of retinal layers in the macula and peripapillary RNFL (pRNFL) measurements was performed using Heidelberg Engineering Spectralis SD-OCT. (3) Results: In the LHON group, the thickness of ganglion cell complex (GCC) (retinal nerve fiber layer (RNFL)—ganglion cell layer (GCL)—inner plexiform layer (IPL)) in the central ETDRS (Early Treatment Diabetic Retinopathy Study) circle was significantly higher than in the nonLHON group (p < 0.001). In all other ETDRS fields, GCC was thinner in the LHON group. The peripapillary RNFL (pRNFL) was significantly thinner in the LHON group in the temporal superior region (p = 0.001). Longitudinal analysis of our cohort during the follow-up time showed a tendency of thickening of the RNFL, GCL, and IPL in the LHON group in the central circle, as well as a small recovery of the pRNFL in the temporal region, which corresponds to the observed central macular thickening. (4) Conclusions: In LHON, the retinal ganglion cell complex thickness (RNFL-GCL-IPL) appears to be relatively preserved in the central ETDRS circle compared to nonLHON optic neuropathies in the chronic phase. Our findings may represent novel biomarkers as well as a structural basis for possible recovery in some patients with LHON
    corecore