7 research outputs found

    Detecting and characterizing frequency fluctuations of vibrational modes

    Get PDF
    We show how frequency fluctuations of a vibrational mode can be separated from other sources of phase noise. The method is based on the analysis of the time dependence of the complex amplitude of forced vibrations. The moments of the complex amplitude sensitively depend on the frequency noise statistics and its power spectrum. The analysis applies to classical and to quantum vibrations

    Frequency fluctuations in silicon nanoresonators

    Get PDF
    Frequency stability is key to performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally-induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature, and found a similar discrepancy. We propose a new method to show this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices
    corecore