33 research outputs found
Comparative evaluation of INNO-LiPA HBV assay, direct DNA sequencing and subtractive PCR-RFLP for genotyping of clinical HBV isolates
Genotypes (A to H) of hepatitis B virus (HBV) influence liver disease progression and response to antiviral therapy in HBV-infected patients. Several methods have been developed for rapid genotyping of HBV strains. However, some of these methods may not be suitable for developing countries. The performance of INNO-LiPA HBV Genotyping assay (LiPA), direct DNA sequencing and subtractive PCR-RFLP of genotype-specific HBV genome regions were evaluated for accurately determining the HBV genotypes by analyzing sera (n = 80) samples from chronic HBV patients. Both, LiPA and DNA sequencing identified 63, 4 and 13 HBV strains as belonging to genotype D, genotype A and mixed genotype A and D, respectively. On the contrary, the PCR-RFLP-based method correctly identified all 4 genotype A but only 56 of 63 genotype D strains. Seven genotype D strains yielded indeterminate results. DNA sequence comparisons showed that a single nucleotide change in the target region generated an additional restriction site for Nla IV that compromised the accuracy of this method. Furthermore, all the mixed genotype A and D strains were identified only as genotype A strains. The data show that the PCR-RFLP-based method incorrectly identified some genotype D strains and failed to identify mixed genotype infections while LiPA and DNA sequencing yielded accurate results
Cardiovascular risk factors and clinical outcomes of patients hospitalized with COVID-19 pneumonia in Somalia
Background:
Coronavirus disease-2019 (COVID-19) is a potentially life-threatening illness with no established treatment. Cardiovascular risk factors (CRFs) exacerbate COVID-19 morbidity and mortality.
Objective:
To determine the prevalence of CRF and clinical outcomes of patients hospitalized with COVID-19 in a tertiary hospital in Somalia.
Methods:
We reviewed the medical records of patients aged 18 years or older with a real-time polymerase chain reaction (RT-PCR)–confirmed COVID-19 hospitalized at the De Martino Hospital in Mogadishu, Somalia, between March and July 2020.
Results:
We enrolled 230 participants; 159 (69.1%) males, median age was 56 (41–66) years. In-hospital mortality was 19.6% (n = 45); 77.8% in the intensive care unit (ICU) compared with 22.2%, in the general wards (p < 0.001). Age ⩾ 40 years [odds ratio (OR): 3.6, 95% confidence interval (CI): 1.2–10.6, p = 0.020], chronic heart disease (OR: 9.3, 95% CI: 2.2–38.9, p = 0.002), and diabetes mellitus (OR: 3.2, 95% CI: 1.6–6.2, p < 0.001) were associated with increased odds of mortality. Forty-three (18.7%) participants required ICU admission. Age ⩾ 40 years (OR: 7.5, 95% CI: 1.7–32.1, p = 0.007), diabetes mellitus (OR: 3.2, 95% CI: 1.6–6.3, p < 0.001), and hypertension (OR: 2.5, 95% CI: 1.2–5.2, p = 0.014) were associated with ICU admission. For every additional CRF, the odds of admission into the ICU increased threefold (OR: 2.7, 95% CI: 1.2–5.2, p < 0.001), while the odds of dying increased twofold (OR: 2.1, 95% CI: 1.3–3.2, p < 0.001).
Conclusions:
We report a very high prevalence of CRF among patients hospitalized with COVID-19 in Somalia. Mortality rates were unacceptably high, particularly among those with advanced age, underlying chronic heart disease, and diabetes
Fatty Acid Methyl Esters from Air-Dried Wood, Bark, and Leaves of Brachychiton diversifolius R. Br: Antibacterial, Antifungal, and Antioxidant Activities
The composition of methylated fatty acids from wood, bark, and leaves of Brachychiton diversifolius was analyzed for the first time using gas chromatography (GC). The results indicated that the major methyl ester of fatty acids found in wood, bark, and leaves were: myristic acid (8.32%), palmitic acid (15.66%), and palmitic acid (9.95%), respectively. In accordance to the biological effects of fatty acid fraction, they were moderately effective against Bacillus subtilis and Sarcina lutea, but they did not show any effect against the growth of Staphylococcus aureus and Pectobacterium carotovorum at a concentration of 2000 μg/mL. The maximum percentages of inhibition of fungal mycelial growth against Penicillium selerotigenum (60.35%), Paecilomyces variotii (70.80%), and Aspergillus niger (70.50%) were shown by the fatty acids from leaves, bark, and bark, respectively. The total antioxidant activity (TAA %) of fatty acids from wood, bark, and leaves, were 40±3.13%, 80±5.14%, and 60±4.50%, respectively. In accordance to the results, the different parts of B. diversifolius could provide important components, such as fatty acids with antimicrobial and antioxidant activities for future studies or uses
The Biofungicide Activity of Some Plant Essential Oils for the Cleaner Production of Model Linen Fibers Similar to Those Used in Ancient Egyptian Mummification
In this work, the essential oils (EOs) from Eriocephalus africanus leaf, Vitex agnus-castus leaf and fruit, Cymbopogon citratus leaf, and Rosmarinus officinalis leaf were used as antifungal agents against isolated Aspergillus flavus, Cladosporium cladosporioides, and Penicillium chrysogenum from an ancient Egyptian child’s mummy. The isolated fungi were used to colonize the samples of linen fibers. The best oil was used as a novel natural product for the cleaner production of model linen fibers similar to those used in ancient Egyptian mummification. Standard and original linen fibers were compared with the infected Linen samples using Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses. The FTIR revealed the changes in the molecular structure of the cellulose, hemicellulose, and lignin of the infected linen fibers. The cellulose crystallinity indices decreased to 64.61%, 52.69%, and 54.63% in the linen inoculated with A. flavus, C. cladosporioides, and P. chrysogenum compared to the control sample (72.08%), thereby affecting the chemical properties of the cellulose. The mycelia inhibition percentages of the three fungi reached 100% after the leaf EO from V. agnus-castus was applied, followed by C. citratus. The V. agnus-castus leaf EO applied at contraptions of 250, 500, 50, 1000, and 2000 µL/mL showed 100% inhibition for A. flavus and P. chrysogenum and reached 100% against C. cladosporioides at concentrations of 500, 750, 1000, and 2000 µL/mL. C. citratus leaf essential oil applied at concentrations of 500, 750, 1000, and 2000 µL/mL showed 100% inhibition to the growth of A. flavus and C. cladosporioides and reached 100% inhibition against the growth of P. chrysogenum at concentrations of 750, 1000 and 2000 µL/mL. This inhibition could be related to the main compounds of caryophyllene (23.13%), eucalyptol (20.59%), sabinene (β-thujene) (12.2%), γ-elemene (9%), and β-farnesene (6.14%) identified in V. agnus-castus leaf EO or due to the main compounds of β-citral (43.63%) and geranial (41.51%), as identified in the leaf EO of C. citratus by GC/MS. The morphological changes in the hyphae of the fungi were observed via SEM examination, where V. agnus-castus leaf EO, the best active oil, showed potent inhibition to fungi grown on the model linen fiber. In this way, the morphology and the structure of the hyphae were effectively changed. Our findings prove that the designed model linen fiber treated with V. agnus-castus leaf EO is able to preserve wrapping fibres and represents a novel natural alternative for effective fungicidal treatment
Natural Durability of Citharexylum spinosum and Morus alba Woods Against Three Mold Fungi
The natural durability of wood to mold fungi was tested under laboratory conditions with locally sourced Citharexylum spinosum and Morus alba woods. The mold fungi were Penicillium selerotigenum, Paecilomyces variotii, and Aspergillus niger. Changes in surface elemental composition were evaluated with energy dispersive X-ray spectroscopy (EDX) and the biodeterioration of wood surfaces by scanning electron microscope (SEM). The C peak element of C. spinosum wood was affected significantly (P = 0.0004) and decreased from 49.91% in the control specimens to 47%, 40.1%, and 40% with P. selerotigenum, A. niger, and P. variotii, respectively. Also, the C peak element of M. alba heartwood significantly decreased (P < 0.0001) from 51.33% in the control specimens to 41.49%, 45.66%, and 43.66% in wood inoculated with A. niger, P. variotii, and P. selerotigenum, respectively. The elements Al and Cu were observed in high percentages with M. alba heartwood inoculated by P. variotii. The methanol extract from M. alba heartwood showed good inhibition against the growth of A. niger at a concentration of 32 μg/mL, and the methanol extract from C. spinosum wood showed remarkable inhibition against the growth of P. variotii at a concentration of 8 μg/mL. The results of this study clearly showed the changes that occur in wood samples as a result of fungal infestation
Anti-Termitic Activity of Three Plant Extracts, Chlorpyrifos, and a Bioagent Compound (Protecto) against Termite Microcerotermes eugnathus Silvestri (Blattodea: Termitidae) in Egypt
A trend towards environmentally friendly chemicals for use in termite management has been occurring globally. This study examined three naturally occurring plant extracts from Lavandula latifolia (Spike lavender), Origanum vulgare (Marjorum), and Syzygium aromaticum (Clove) against the termite Microcerotermes eugnathus. Plant extract results were compared to two commercially used termite pesticides, the bio-insecticide, Bacillus thuringiensis var. kurstaki (Protecto 9.4% WP) and Dursban (Chlorpyrifos 48%). Gas chromatography–mass spectrometry (GC-MS) analysis was used to identify the main compounds in the three plant extracts. The main compounds in Lavandula Latifolia were linalool (21.49%), lavandulol (12.77%), β-terpinyl acetate (10.49%), and camphor (9.30%). Origanum vulgare extract contained thymol (14.64%), m-cymene (10.63%), linalool (6.75%), and terpinen-4-ol (6.92%) as main compounds. Syzygium aromaticum contained eugenol (99.16%) as the most abundant identified compound. The extract of O. vulgare caused the highest termite death rate, with an LC50 of 770.67 mg/L. Exposure to lavender extract showed a high death rate with an LC50 of 1086.39 mg/L. Clove extract did not show significant insecticidal activity with an LC50 > 2000 mg/L. Significant termiticide effects were found, with LC50 values of 84.09 and 269.98 mg/L for soldiers and workers under the application of Dursban and Protecto, respectively. The LC50 values reported for nymphs were <120, <164.5, and 627.87 mg/L after exposure to Dursban, Protecto, and O. vulgare extract, respectively. The results of the study show that some of the extracts have low toxicity compared to the bioagent and Dursban, and may show promise as natural termiticides, particularly as extracts from O. vulgare
Impact of an antibiotic stewardship program on antibiotic utilization, bacterial susceptibilities, and cost of antibiotics
Abstract Antimicrobial misuse is a worldwide issue, and antimicrobial resistance is considered the most challenging aspect of health care. It has been reported that as much as 30–50% of antimicrobials prescribed in hospitals are deemed unnecessary or inappropriate. Antibiotic stewardship programs (ASPs) include policies that apply continuous management of judicious anti-infectious treatment in the clinical setting. Therefore, the objectives of this study were to evaluate the effect of ASPs on antibiotic consumption, the costs of antibiotic expenditure, and the sensitivity of antimicrobials. A retrospective, quasi-experimental study was performed to assess the effect of ASP at An-Najah National University Hospital, a tertiary care hospital in the West Bank, Palestine, over a period of 20 months before and 17 months after the implementation of the ASP. Data on antibiotic consumption were reported monthly as days of therapy per 1000 patient-days and monthly costs (USD/1000 patient-days). A total of 2367 patients who received one or more of the targeted antibiotics (meropenem, colistin and tigecycline) during their hospital stay were included in the study. They have split into two groups: 1710 patients in the pre-ASP group, and 657 patients in the post ASP group. The most significant reduction in DOT per 1000 patient-days was seen with tigecycline, with a percentage of change of − 62.08%. Furthermore, the mean cost of the three antibiotics decreased significantly by 55.5% in the post-ASP phase compared to the pre-ASP phase. After the implementation of ASP, there was a statistically significant increase in susceptibility to meropenem, piperacillin and piperacillin/tazobactam with respect to Pseudomonas aeruginosa. However, changes in mortality rates were not statistically significant (p = 0.057). ASP positively reduced costs and antimicrobial consumption, with no statistically significant effect on the overall mortality rate. However, a long-term evaluation of the ASP's impact is needed to conclude its lasting impact on infection-related mortality and antimicrobial susceptibility pattern
Impact of COVID-19 Pandemic Lockdown on the Prognosis, Morbidity, and Mortality of Patients Undergoing Elective and Emergency Abdominal Surgery: A Retrospective Cohort Study in a Tertiary Center, Saudi Arabia
The SARS-CoV-2 pandemic’s main concerns are limiting the spread of infectious diseases and upgrading the delivery of health services, infrastructure, and therapeutic provision. The goal of this retrospective cohort study was to evaluate the emergency experience and delay of elective abdominal surgical intervention at King Abdul-Aziz University Hospital from October 2019 to October 2020, with a focus on post-operative morbidity and mortality before and during the COVID-19 pandemic. This study compares two groups of patients with emergent and elective abdominal surgical procedures between two different periods; the population was divided into two groups: the control group, which included 403 surgical patients, and the lockdown group, which included 253 surgical patients. During the lockdown, surgical activity was reduced by 37.2% (p = 0.014), and patients were more likely to require reoperations and blood transfusions during or after surgery (p= 0.002, 0.021, and 0.018, respectively). During the lockdown period, the average length of stay increased from 3.43 to 5.83 days (p = 0.002), and the patients who developed complications (53.9%) were more than those in the control period (46.1%) (p = 0.001). Our tertiary teaching hospital observed a significant decline in the overall number of surgeries performed during the COVID-19 pandemic and lockdown period. During the lockdown, abdominal surgery was performed only on four patients; they were positive for COVID-19. Three of them underwent exploratory laparotomy; two of the three developed shock post-operative; one patient had colon cancer (ASA score 3), one had colon disease (ASA score 2), and two had perforated bowels (ASA scores 2 and 4, respectively). Two out of four deaths occurred after surgery. Our results showed the impact of the COVID-19 lockdown on surgical care as both 30-day mortality and total morbidity have risen considerably
The impact of calcitriol on orthodontic tooth movement:A cumulative systematic review and meta-analysis
A cumulative review with a systematic approach aimed to provide a comparison of studies’ investigating the possible impact of the active form of vitamin D3, calcitriol (CTL), on the tooth movement caused by orthodontic forces (OTM) by evaluating the quality of evidence, based on collating current data from animal model studies, in vivo cell culture studies, and human clinical trials. Methods: A strict systematic review protocol was applied following the application of the International Prospective Register of Systematic Reviews (PROSPERO). A structured search strategy, including main keywords, was defined during detailed search with the application of electronic database systems: Medline/Pubmed, EMBASE, Scopus, Web of Science, and PsycINFO. In addition, a search was carried out with the use of ClinicalTrials.gov search in order to include ongoing or recently completed trials. The Oxford Level of Evidence and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was utilized to critically evaluate the risk of bias and relative quality of studies included. Meta-analysis with the use of RevMan5 software, random effect, and inverted variable method allowed the quantification of cumulative results. Results: Twenty-seven studies were identified which fulfilled inclusion criteria, including two clinical studies. The assessed level of evidence was variable and inconsistent, predominantly being moderate or low due to a significant difference in study design, sample size, and study protocols. Data synthesis rendered from meta-analysis involving various CTL doses demonstrated slight discrepancies in tooth movement between control and experimental groups (mean difference = 0.27; 95% CI: 0.01–0.53, std mean difference = 0.49; 95% CI: 0.09–0.89), as well as relatively moderate heterogenicity. Conclusions: Although it has been suggested that CTL could accelerate OTM in animal studies and clinical context, these scarce data were supported by a low level of evidence and the studies were carried out using inadequate sample size. Well-powered RCT studies would help to overcome the lack of robustness of the research
Investigation of genetic variation and lifestyle determinants in vitamin D levels in Arab individuals
Abstract Background Differences in the concentrations of circulating 25-hydroxyvitamin D [25(OH)D] are associated with a wide range of health outcomes; however, most studies on genetic variants that impact 25(OH)D levels have been conducted in European populations. Here we aimed to identify common genetic variants that affect vitamin D concentrations in individuals of self-reported Arab ethnicity. Methods The study included 1151 Arab subjects living in Kuwait. Common variants of single-nucleotide polymorphisms and genes previously associated with vitamin D levels, such as GC, PDE3B, CYP2R1, and NADSYN1, were genotyped. Raw vitamin D level data were corrected for age, body mass index, and sex and then normalized. Regression tree analyses were performed to identify the impact of genetic variants on vitamin D levels. Results Compared with other gene variants, the GC gene variants exhibited the greatest impact on vitamin D levels in our study population, of which rs2298850 had the lowest p value (0.003). Individuals homozygous for the derived allele C had lower vitamin D levels. Analyses of the interaction between the number of years for which the subjects had lived in Kuwait and genetic variation in the GC gene showed that those with the CC genotype of rs2298850 who had lived in Kuwait for  51 years had higher vitamin D levels (mean 28 ng/ml) regardless of the genotype of their GC gene. Conclusions The GC gene may play a major role in determining vitamin D levels in Arab populations