386 research outputs found

    Revising the age for the Baptistina asteroid family using WISE/NEOWISE data

    Get PDF
    We have used numerical routines to model the evolution of a simulated Baptistina family to constrain its age in light of new measurements of the diameters and albedos of family members from the Wide-field Infrared Survey Explorer. We also investigate the effect of varying the assumed physical and orbital parameters on the best-fitting age. We find that the physically allowed range of assumed values for the density and thermal conductivity induces a large uncertainty in the rate of evolution. When realistic uncertainties in the family members' physical parameters are taken into account we find the best-fitting age can fall anywhere in the range of 140-320 Myr. Without more information on the physical properties of the family members it is difficult to place a more firm constraint on Baptistina's age.Comment: 27 pages, 16 figures, accepted to Ap

    Using Narrow Band Photometry to Detect Young Brown Dwarfs in IC348

    Full text link
    We report the discovery of a population of young brown dwarf candidates in the open star cluster IC348 and the development of a new spectroscopic classification technique using narrow band photometry. Observations were made using FLITECAM, the First Light Camera for SOFIA, at the 3-m Shane Telescope at Lick Observatory. FLITECAM is a new 1-5 micron camera with an 8 arcmin field of view. Custom narrow band filters were developed to detect absorption features of water vapor (at 1.495 microns) and methane (at 1.66 microns) characteristic of brown dwarfs. These filters enable spectral classification of stars and brown dwarfs without spectroscopy. FLITECAM's narrow and broadband photometry was verified by examining the color-color and color-magnitude characteristics of stars whose spectral type and reddening was known from previous surveys. Using our narrow band filter photometry method, it was possible to identify an object measured with a signal-to-noise ratio of 20 or better to within +/-3 spectral class subtypes for late-type stars. With this technique, very deep images of the central region of IC348 (H ~ 20.0) have identified 18 sources as possible L or T dwarf candidates. Out of these 18, we expect that between 3 - 6 of these objects are statistically likely to be background stars, with the remainder being true low-mass members of the cluster. If confirmed as cluster members then these are very low-mass objects (~5 Mjupiter). We also describe how two additional narrow band filters can improve the contrast between M, L, and T dwarfs as well as provide a means to determine the reddening of an individual object.Comment: 43 pages, 17 figures. Accepted for publication in the Astrophysical Journal 27 June 200

    Characterization of Active Main Belt Object P/2012 F5 (Gibbs): A Possible Impacted Asteroid

    Get PDF
    In this work we characterize the recently discovered active main belt object P/2012 F5 (Gibbs), which was discovered with a dust trail > 7' in length in the outer main belt, 7 months prior to aphelion. We use optical imaging obtained on UT 2012 March 27 to analyze the central condensation and the long trail. We find nuclear B-band and R-band apparent magnitudes of 20.96 and 19.93 mag, respectively, which give an upper limit on the radius of the nucleus of 2.1 km. The geometric cross-section of material in the trail was ~ 4 x 10^8 m^2, corresponding to a dust mass of ~ 5 x 10^7 kg. Analysis of infrared images taken by the Wide-Field Infrared Survey Explorer in September 2010 reveals that the object was below the detection limit, suggesting that it was less active than it was during 2012, or possibly inactive, just 6 months after it passed through perihelion. We set a 1-sigma upper limit on its radius during this time of 2.9 km. P/2012 F5 (Gibbs) is dynamically stable in the outer main belt on timescales of ~ 1 Gyr, pointing towards an asteroidal origin. We find that the morphology of the ejected dust is consistent with it being produced by a single event that occurred on UT 2011 July 7 ±\pm 20 days, possibly as the result of a collision with a small impactor.Comment: 29 pages, 5 figures. Accepted for publication in Ap

    WISE/NEOWISE Observations of the Jovian Trojans: Preliminary Results

    Get PDF
    We present the preliminary analysis of over 1739 known and 349 candidate Jovian Trojans observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). With this survey the available diameters, albedos and beaming parameters for the Jovian Trojans have been increased by more than an order of magnitude compared to previous surveys. We find that the Jovian Trojan population is very homogenous for sizes larger than 10\sim10km (close to the detection limit of WISE for these objects). The observed sample consists almost exclusively of low albedo objects, having a mean albedo value of 0.07±0.030.07\pm0.03. The beaming parameter was also derived for a large fraction of the observed sample, and it is also very homogenous with an observed mean value of 0.88±0.130.88\pm0.13. Preliminary debiasing of the survey shows our observed sample is consistent with the leading cloud containing more objects than the trailing cloud. We estimate the fraction to be N(leading)/N(trailing) 1.4±0.2\sim 1.4 \pm 0.2, lower than the 1.6±0.11.6 \pm 0.1 value derived by others.Comment: Accepted for publication in Astrophysical Journal. Electronic table will be available at the publishers websit

    Lingering grains of truth around comet 17P/Holmes

    Get PDF
    Comet 17P/Holmes underwent a massive outburst in 2007 Oct., brightening by a factor of almost a million in under 48 hours. We used infrared images taken by the Wide-Field Survey Explorer mission to characterize the comet as it appeared at a heliocentric distance of 5.1 AU almost 3 years after the outburst. The comet appeared to be active with a coma and dust trail along the orbital plane. We constrained the diameter, albedo, and beaming parameter of the nucleus to 4.135 ±\pm 0.610 km, 0.03 ±\pm 0.01 and 1.03 ±\pm 0.21, respectively. The properties of the nucleus are consistent with those of other Jupiter Family comets. The best-fit temperature of the coma was 134 ±\pm 11 K, slightly higher than the blackbody temperature at that heliocentric distance. Using Finson-Probstein modeling we found that the morphology of the trail was consistent with ejection during the 2007 outburst and was made up of dust grains between 250 μ\mum and a few cm in radius. The trail mass was \sim 1.2 - 5.3 ×\times 1010^{10} kg.Comment: Accepted to ApJ. 2 tables, 4 figure

    Uncertainties on Asteroid Albedos Determined by Thermal Modeling

    Get PDF
    We present an analysis of the accuracy of geometric albedos determined for asteroids through the modeling of observed thermal infrared radiation. We show that albedo uncertainty is dominated by the uncertainty on the measured HVH_V absolute magnitude, and that any analysis using albedos in a statistical application will also be dominated by this source of uncertainty. For all but the small fraction of asteroids with a large amount of characterization data, improved knowledge of the HVH_V magnitude will be fundamentally limited by incomplete phase curve coverage, incomplete light curve knowledge, and the necessary conversion from the observed band to the VV band. Switching the absolute magnitude standard to a different band such a rr' would mitigate the uncertainty due to band conversion for many surveys, but this only represents a small component of the total uncertainty. Therefore, techniques making use of these albedos must ensure that their uncertainties are being properly accounted for.Comment: 10 pages, 1 figure. Accepted to the Planetary Science Journa

    Main Belt Asteroids with WISE/NEOWISE: Near-Infrared Albedos

    Get PDF
    We present revised near-infrared albedo fits of 2835 Main Belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. As our sample requires reflected light measurements, it undersamples small, low albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the Main Belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 um. Conversely, the 4.6 um albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 um albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 um albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are an important indicator of asteroid taxonomy and can identify interesting targets for spectroscopic followup.Comment: Accepted for publication in ApJ; full version of Table1 to be published electronically in the journa
    corecore