18 research outputs found

    First Focal Mechanisms of Marsquakes

    Get PDF
    Since February 2019, NASA's InSight lander is recording seismic signals on the planet Mars, which, for the first time, allows to observe ongoing tectonic processes with geophysical methods. A number of Marsquakes have been located in the Cerberus Fossae graben system in Elysium Planitia and further west, in the Orcus Patera depression. We present a first study of the focal mechanisms of three well-recorded events (S0173a, S0183a, S0235b) to determine the processes dominating in the source region. We infer for all three events a predominantly extensional setting. Our method is adapted to the case of a single, multicomponent receiver and based on fitting waveforms of P and S waves against synthetic seismograms computed for the initial crustal velocity model derived by the InSight team. We explore the uncertainty due to the single-station limitation and find that even data recorded by one station constrains the mechanisms (reasonably) well. For the events in the Cerberus Fossae region (S0173a, S0235b) normal faulting with a relatively steep dipping fault plane is inferred, suggesting an extensional regime mainly oriented E-W to NE-SW. The fault regime in the Orcus Patera region is not determined uniquely because only the P wave can be used for the source inversion. However, we find that the P and weak S waves of the S0183a event show similar polarities to the event S0173, which indicates similar fault regimes

    Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data

    Get PDF
    Mars’s seismic activity and noise have been monitored since January 2019 by the seismometer of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander. At night, Mars is extremely quiet; seismic noise is about 500 times lower than Earth’s microseismic noise at periods between 4 s and 30 s. The recorded seismic noise increases during the day due to ground deformations induced by convective atmospheric vortices and ground-transferred wind-generated lander noise. Here we constrain properties of the crust beneath InSight, using signals from atmospheric vortices and from the hammering of InSight’s Heat Flow and Physical Properties (HP3) instrument, as well as the three largest Marsquakes detected as of September 2019. From receiver function analysis, we infer that the uppermost 8–11 km of the crust is highly altered and/ or fractured. We measure the crustal diffusivity and intrinsic attenuation using multiscattering analysis and find that seismic attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles

    Variation de la vitesse des ondes de cisaillement lors de la transition solide-liquide au sein des argiles. Application aux glissements de terrain

    Get PDF
    Landslides affect many clay slopes in the world and regularly threaten people in urban areas mountainous. These landslides are characterized by a slow velocity but they may suddenly liquefy and accelerate unexpectedly. The solid-liquid transition on the clay has been studied of Trièves region (French Alps) using rheological experiments. They have shown the yield stress thixotropic behavior with a viscosity bifurcation which can explain the catastrophic fluidization observed in the field. This loss of material stiffness can be followed by a drop in the shear wave velocity (Vs). Inclined plane test and field experiments (Pont-Bourquin landslides in Switzerland) have both shown a precursor drop of Vs indicating that it could be a good proxy for monitoring unstable clay slope.Les glissements de terrain argileux affectent de nombreux versants à travers le monde et menacent régulièrement les activités humaines dans les zones urbanisées montagneuses. Ces glissements sont caractérisés par des cinématiques souvent lentes mais ils peuvent brutalement se liquéfier et accélérer de manière imprévisible. Cette transition solide-liquide a été étudiée sur les argiles de la région du Trièves (Alpes Françaises) à l'aide d'études rhéologiques. Elles ont montré le caractère de fluide à seuil thixotrope avec une bifurcation de viscosité importante lors de la fluidification pouvant expliquer le caractère catastrophique de l'accélération observée sur le terrain. Cette perte de rigidité du matériau peut être observée par une chute de la vitesse des ondes de cisaillement (Vs). Des études réalisées en parallèle à la fois sur un modèle analogique de plan incliné et sur le terrain (glissement de Pont-Bourquin, Suisse) ont permis d'observer une chute de Vs précédent à cette fluidification montrant ainsi que Vs pourrait être un bon proxy pour la surveillance des instabilités de terrain argileux

    Variation of shear wave velocity in the fluid-solid transition of clay. Clay landslides application.

    No full text
    Les glissements de terrain argileux affectent de nombreux versants à travers le monde et menacent régulièrement les activités humaines dans les zones urbanisées montagneuses. Ces glissements sont caractérisés par des cinématiques souvent lentes mais ils peuvent brutalement se liquéfier et accélérer de manière imprévisible. Cette transition solide-liquide a été étudiée sur les argiles de la région du Trièves (Alpes Françaises) à l'aide d'études rhéologiques. Elles ont montré le caractère de fluide à seuil thixotrope avec une bifurcation de viscosité importante lors de la fluidification pouvant expliquer le caractère catastrophique de l'accélération observée sur le terrain. Cette perte de rigidité du matériau peut être observée par une chute de la vitesse des ondes de cisaillement (Vs). Des études réalisées en parallèle à la fois sur un modèle analogique de plan incliné et sur le terrain (glissement de Pont-Bourquin, Suisse) ont permis d'observer une chute de Vs précédent à cette fluidification montrant ainsi que Vs pourrait être un bon proxy pour la surveillance des instabilités de terrain argileux.Landslides affect many clay slopes in the world and regularly threaten people in urban areas mountainous. These landslides are characterized by a slow velocity but they may suddenly liquefy and accelerate unexpectedly. The solid-liquid transition on the clay has been studied of Trièves region (French Alps) using rheological experiments. They have shown the yield stress thixotropic behavior with a viscosity bifurcation which can explain the catastrophic fluidization observed in the field. This loss of material stiffness can be followed by a drop in the shear wave velocity (Vs). Inclined plane test and field experiments (Pont-Bourquin landslides in Switzerland) have both shown a precursor drop of Vs indicating that it could be a good proxy for monitoring unstable clay slope

    Mars Seismic Catalogue, InSight Mission; V3 2020-07-01

    No full text
    The NASA InSight mission installed a single seismic station on the surface of Mars in 2019. The Marsquake Service (MQS) is an official service of the InSight ground services. MQS is tasked with detecting and characterising marsquakes, and curating the catalogue. Waveform data is publicly released on a 3 month schedule. Starting on 2 January, 2020, an updated MQS catalogue is released with each new waveform dataset. This is Data Release 3

    Mars Seismic Catalogue, InSight Mission; V1 2/1/2020

    No full text
    The NASA InSight mission installed a single seismic station on the surface of Mars in 2019. The Marsquake Service (MQS) is an official service of the InSight ground services. MQS is tasked with detecting and characterising marsquakes, and curating the catalogue. Waveform data is publicly released on a 3 month schedule. Starting on 2 January, 2020, an updated MQS catalogue is released with each new waveform dataset. This is Data Release 1

    Autocorrelation of the ground vibration recorded by the SEIS-InSight seismometer on Mars for imaging and monitoring applications

    No full text
    vEGU21: Gather Online | 19–30 April 2021Since early February 2019, the SEIS seismometer deployed at the surface of Mars in the framework of the NASA-InSight mission has been continuously recording the ground motion at Elysium Planitia. In this work, we take advantage of this exceptional dataset to put constraints on the crustal properties of Mars using seismic interferometry (SI). This method use the seismic waves, either from background vibrations of the planet or from quakes, that are scattered in the medium in order to recover the ground response between two seismic sensors. Applying the principles of SI to the single-station configuration of SEIS, we compute, for each Sol (martian day) and each local hour, all the components of the time-domain autocorrelation tensor of random ambient vibrations in various frequency bands. A similar computation is performed on the diffuse waveforms generated by more than a hundred Marsquakes. For imaging application a careful signal-to-noise ratio analysis and an inter-comparison between the two datasets are applied. These analyses suggest that the reconstructed ground responses are most reliable in a relatively narrow frequency band around 2.4Hz, where an amplification of both ambient vibrations and seismic events is observed. The average Auto-Correlation Functions (ACFs) from both ambient vibrations and seismic events contain well identifiable seismic arrivals, that are very consistent between the two datasets. We interpret the vertical and horizontal ACFs as the ground reflection response below InSight for the compressional waves and the shear waves respectively. We propose a simple stratified velocity model of the crust, which is most compatible with the arrival times of the detected phases, as well as with previous seismological studies of the SEIS record. The hourly computation of the ACFs over one martian year also allows us to study the diurnal and seasonal variations of the reconstructed ground response with a technique call Passive Image Interferometry (PII). In this study we present measurements of the relative stretching coefficient between consecutive ACF waveforms and discuss the potential origins of the observed temporal variations

    Mars Seismic Catalogue, InSight Mission; V3 2020-07-01

    No full text
    The NASA InSight mission installed a single seismic station on the surface of Mars in 2019. The Marsquake Service (MQS) is an official service of the InSight ground services. MQS is tasked with detecting and characterising marsquakes, and curating the catalogue. Waveform data is publicly released on a 3 month schedule. Starting on 2 January, 2020, an updated MQS catalogue is released with each new waveform dataset. This is Data Release 3

    Super high frequency events: a new class of events recorded by the InSight seismometers on Mars

    No full text
    International audienceWe present a new class of seismic signals that are recorded by the seismometer placed on the surface of Mars as part of the NASA InSight mission. The signals, termed super high frequency (SF) events, are of short duration (∼20 s), are often similar in amplitude, and feature high frequency energy between ∼5 and 30 Hz that is dominant on the horizontal components. For detection and characterization of SF events, we employ the available continuous 20 samples per second (sps) data from the Very Broadband instrument. Due to bandwidth limitations, 100 sps data from the short period sensor are only partially obtainable, but they aid in analysis of the frequency content above 10 Hz and in distinguishing the events from high frequency noise. From June 2019 to May 2020, 780 SF events have been detected. The events observed occur in repeatable patterns that last for weeks. Initially, the SF events were clustered in the hours before sunset, but more recently, they have been distributed across the evening period. Based on template matching techniques, we have identified 16 distinct families that generally follow the temporal clusters. A thermal origin of these events is suggested, since the majority of the events fall within a ±2 h time window around sunset with extreme temperature changes. The SF events have similarities with thermal events observed on the lunar surface from data collected during the Apollo missions
    corecore