25 research outputs found

    Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and Multichannel Quantum Defect Theory analysis

    Full text link
    New measurements of high-lying even parity 6sns1 ⁣S06sns\, {}^1 \! S_0 and 6snd3,1 ⁣D26snd\,{}^{3,1}\!D_2 levels of neutral 174^{174}Yb are presented in this paper. Spectroscopy is performed by a two-step laser excitation from the ground state 4f146s21 ⁣S04f^{14}6s^2 \, {}^1 \! S_0, and the Rydberg levels are detected by using the field ionization method. Additional two-photon microwave spectroscopy is used to improve the relative energy accuracy where possible. The spectroscopic measurements are complemented by a multichannel quantum defect theory (MQDT) analysis for the J=0 and the two-coupled J=2 even parity series. We compare our results with the previous analysis of Aymar {\it{et al}} \cite{Aymar_1980} and analyze the observed differences. From the new MQDT models, a revised value for the first ionization limit I6s=50443.07041(25)I_{6s}=50443.07041(25) cm1^{-1} is proposed.Comment: 15 pages, 3 figure

    Topologically decoherence-protected qubits with trapped ions

    Full text link
    We show that trapped ions can be used to simulate a highly symmetrical Hamiltonian with eingenstates naturally protected against local sources of decoherence. This Hamiltonian involves long range coupling between particles and provides a more efficient protection than nearest neighbor models discussed in previous works. Our results open the perspective of experimentally realizing in controlled atomic systems, complex entangled states with decoherence times up to nine orders of magnitude longer than isolated quantum systems.Comment: 4 page

    La plasmonique THz : guides d'onde, filtres et antennes

    No full text

    Directional beam pattern from a double metal quantum cascade laser with a TEM-horn antenna

    No full text

    Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and Multichannel Quantum Defect Theory analysis

    No full text
    International audienceNew measurements of high-lying even parity 6sns 1 S0 and 6snd 3,1 D2 levels of neutral 174 Yb are presented in this paper. Spectroscopy is performed by a two-step laser excitation from the ground state 4f 14 6s 2 1 S0, and the Rydberg levels are detected by using the field ionization method. Additional two-photon microwave spectroscopy is used to improve the relative energy accuracy where possible. The spectroscopic measurements are complemented by a multichannel quantum defect theory (MQDT) analysis for the J=0 and the two-coupled J=2 even parity series. We compare our results with the previous analysis of Aymar et al [1] and analyze the observed differences. From the new MQDT models, a revised value for the first ionization limit I6s = 50443.07041(25) cm −1 is proposed
    corecore