10 research outputs found

    A two-phase model for smoothly joining disparate growth phases in the macropodid Thylogale billardierii

    No full text
    Generally, sigmoid curves are used to describe the growth of animals over their lifetime. However, because growth rates often differ over an animal's lifetime a single curve may not accurately capture the growth. Broken-stick models constrained to pass through a common point have been proposed to describe the different growth phases, but these are often unsatisfactory because essentially there are still two functions that describe the lifetime growth. To provide a single, converged model to age animals with disparate growth phases we developed a smoothly joining two-phase nonlinear function (SJ2P), tailored to provide a more accurate description of lifetime growth of the macropod, the Tasmanian pademelon Thylogale billardierii. The model consists of the Verhulst logistic function, which describes pouch-phase growth--joining smoothly to the Brody function, which describes post-pouch growth. Results from the model demonstrate that male pademelons grew faster and bigger than females. Our approach provides a practical means of ageing wild pademelons for life history studies but given the high variability of the data used to parametrise the second growth phase of the model, the accuracy of ageing of post-weaned animals is low: accuracy might be improved with collection of longitudinal growth data. This study provides a unique, first robust method that can be used to characterise growth over the lifespan of pademelons. The development of this method is relevant to collecting age-specific vital rates from commonly used wildlife management practices to provide crucial insights into the demographic behaviour of animal populations.Financial support was provided by the Tasmanian Community Forest Agreement: Alternatives to 1080 Programme. In-kind support was provided by the University of Tasmania

    A Two-Phase Model for Smoothly Joining Disparate Growth Phases in the Macropodid Thylogale billardierii

    Get PDF
    Generally, sigmoid curves are used to describe the growth of animals over their lifetime. However, because growth ratesoften differ over an animal’s lifetime a single curve may not accurately capture the growth. Broken-stick models constrainedto pass through a common point have been proposed to describe the different growth phases, but these are oftenunsatisfactory because essentially there are still two functions that describe the lifetime growth. To provide a single,converged model to age animals with disparate growth phases we developed a smoothly joining two-phase nonlinearfunction (SJ2P), tailored to provide a more accurate description of lifetime growth of the macropod, the Tasmanianpademelon Thylogale billardierii. The model consists of the Verhulst logistic function, which describes pouch-phase growth– joining smoothly to the Brody function, which describes post-pouch growth. Results from the model demonstrate thatmale pademelons grew faster and bigger than females. Our approach provides a practical means of ageing wildpademelons for life history studies but given the high variability of the data used to parametrise the second growth phaseof the model, the accuracy of ageing of post-weaned animals is low: accuracy might be improved with collection oflongitudinal growth data. This study provides a unique, first robust method that can be used to characterise growth overthe lifespan of pademelons. The development of this method is relevant to collecting age-specific vital rates fromcommonly used wildlife management practices to provide crucial insights into the demographic behaviour of animalpopulations

    Gross and microscopic visceral anatomy of the male Cape fur seal, Arctocephalus pusillus pusillus (Pinnipedia: Otariidae), with reference to organ size and growth

    No full text
    The gross and microscopic anatomy of the Cape fur seal heart, lung, liver, spleen, stomach, intestine and kidneys (n = 31 seals) is described. Absolute and relative size of organs from 30 male seals are presented, with histological examination conducted on 7 animals. The relationship between log body weight, log organ weight and age was investigated using linear regression. Twenty five animals were of known age, while 6 were aged from counts of incremental lines observed in the dentine of tooth sections. For the range of ages represented in this study, body weight changes were accurately described by the exponential growth equation, weight = w(o)r(t), with body weight increasing by 23% per annum until at least 9–10 y of age. Organ weight increased at a rate of between 25% and 33% per annum until at least 9–10 y of age, with the exception of the intestines, where exponential increase appeared to have ceased by about 7 y. The relationship between body weight and organ weight was investigated using logarithmic transformations of the allometric equation, y = ax(b), where the exponent b is 1 if organ weight is proportional to body weight. Most organs increased in proportion to the body. However, the heart, liver and spleen had exponents b > 1, suggesting that these organs increased at a faster rate than the body. The basic anatomical features of the viscera were similar to those of other pinnipeds, with some exceptions, including the arrangement of the multilobed lung and liver. Apart from the large liver and kidneys, relative size of the organs did not differ greatly from similar sized terrestrial carnivores. The histological features of the organs were generally consistent with those previously described for this species and other otariids. The heart, as in other pinnipeds, was unlike that of cetacea in not having unusually thick endocardium or prominent Purkinje cells. Notable histological features of the lungs included prominent fibrous septa, prominent smooth muscle bundles, cartilage extending to the level of the alveolar sacs and ample lymphoid tissue. The spleen had a thick capsule, well developed trabeculae and plentiful plasma cells. Abundant parietal cells were present in the fundic glands and lymphoid follicles were present in the gastric lamina propria, particularly in the pyloric region. Small intestinal villi were very long but this could have resulted from underlying chronic inflammation. Lymphoid follicles were prominent in the colon. The kidney reniculi each had a complete cortex, medulla and calyx, but a sportaperi medullaris musculosa was not identified

    Egg distributions of insect parasitoids: modelling and analysis of temporal data with host density dependence

    No full text
    A simple numerical procedure is presented for the problem of estimating the parameters of models for the distribution of eggs oviposited in a host. The modelling is extended to incorporate both host density and time dependence to produce a remarkably parsimonious structure with only seven parameters to describe a data set of over 3,000 observations. This is further refined using a mixed model to accommodate several large outliers. Both models show that the level of superparasitism declines with increasing host density, and the rate declines over time. It is proposed that the differing behaviours represented by the mixed model may reflect a balance between behavioural strategies of different selective benefit
    corecore