2,702 research outputs found

    Semiclassical quantization with bifurcating orbits

    Get PDF
    Bifurcations of classical orbits introduce divergences into semiclassical spectra which have to be smoothed with the help of uniform approximations. We develop a technique to extract individual energy levels from semiclassical spectra involving uniform approximations. As a prototype example, the method is shown to yield excellent results for photo-absorption spectra for the hydrogen atom in an electric field in a spectral range where the abundance of bifurcations would render the standard closed-orbit formula without uniform approximations useless. Our method immediately applies to semiclassical trace formulae as well as closed-orbit theory and offers a general technique for the semiclassical quantization of arbitrary systems

    Photoabsorption spectra of the diamagnetic hydrogen atom in the transition regime to chaos: Closed orbit theory with bifurcating orbits

    Full text link
    With increasing energy the diamagnetic hydrogen atom undergoes a transition from regular to chaotic classical dynamics, and the closed orbits pass through various cascades of bifurcations. Closed orbit theory allows for the semiclassical calculation of photoabsorption spectra of the diamagnetic hydrogen atom. However, at the bifurcations the closed orbit contributions diverge. The singularities can be removed with the help of uniform semiclassical approximations which are constructed over a wide energy range for different types of codimension one and two catastrophes. Using the uniform approximations and applying the high-resolution harmonic inversion method we calculate fully resolved semiclassical photoabsorption spectra, i.e., individual eigenenergies and transition matrix elements at laboratory magnetic field strengths, and compare them with the results of exact quantum calculations.Comment: 26 pages, 9 figures, submitted to J. Phys.

    Decimation and Harmonic Inversion of Periodic Orbit Signals

    Full text link
    We present and compare three generically applicable signal processing methods for periodic orbit quantization via harmonic inversion of semiclassical recurrence functions. In a first step of each method, a band-limited decimated periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. In a second step, the frequencies and amplitudes of the decimated signal are determined by either Decimated Linear Predictor, Decimated Pade Approximant, or Decimated Signal Diagonalization. These techniques, which would have been numerically unstable without the windowing, provide numerically more accurate semiclassical spectra than does the filter-diagonalization method.Comment: 22 pages, 3 figures, submitted to J. Phys.

    A Minimal Periods Algorithm with Applications

    Full text link
    Kosaraju in ``Computation of squares in a string'' briefly described a linear-time algorithm for computing the minimal squares starting at each position in a word. Using the same construction of suffix trees, we generalize his result and describe in detail how to compute in O(k|w|)-time the minimal k-th power, with period of length larger than s, starting at each position in a word w for arbitrary exponent k2k\geq2 and integer s0s\geq0. We provide the complete proof of correctness of the algorithm, which is somehow not completely clear in Kosaraju's original paper. The algorithm can be used as a sub-routine to detect certain types of pseudo-patterns in words, which is our original intention to study the generalization.Comment: 14 page

    Semiclassical quantization of the hydrogen atom in crossed electric and magnetic fields

    Get PDF
    The S-matrix theory formulation of closed-orbit theory recently proposed by Granger and Greene is extended to atoms in crossed electric and magnetic fields. We then present a semiclassical quantization of the hydrogen atom in crossed fields, which succeeds in resolving individual lines in the spectrum, but is restricted to the strongest lines of each n-manifold. By means of a detailed semiclassical analysis of the quantum spectrum, we demonstrate that it is the abundance of bifurcations of closed orbits that precludes the resolution of finer details. They necessitate the inclusion of uniform semiclassical approximations into the quantization process. Uniform approximations for the generic types of closed-orbit bifurcation are derived, and a general method for including them in a high-resolution semiclassical quantization is devised

    Utilizing Emerging Designs and Practices to Improve Student Learning

    Get PDF
    In this session, we will share an overview of the current framework for understanding student learning approaches and give participants an opportunity to reflect on their own practices and how that may impact students. We will then discuss innovative ideas that can be transported into classrooms in order to improve learning approaches, such as metacognition development, assessment adjustments, study skills training, and becoming aware of instructor’s approaches to teaching

    Facilitating Faculty Development to Promote Self-Directed Learning

    Get PDF
    In the U. S., only 63% of college students complete their degree, making it critical for universities to explore interventions that encourage student success. The foundational learning activity for college success is studying. However, several studies reveal that students lack effective study habits, especially regarding the quality and quantity of time-on-task. We will share a model of faculty development that tackles this challenge through course and assignment revisions that promote self-directed learning, metacognition, and generally improving students’ learning approaches

    Utilizing Emerging Designs and Practices to Improve Student Learning

    Get PDF
    In this session, we will share an overview of the current framework for understanding student learning approaches and give participants an opportunity to reflect on their own practices and how that may impact students. We will then discuss innovative ideas that can be transported into classrooms in order to improve learning approaches, such as metacognition development, assessment adjustments, study skills training, and becoming aware of instructor’s approaches to teaching

    Semiclassical Quantization by Pade Approximant to Periodic Orbit Sums

    Full text link
    Periodic orbit quantization requires an analytic continuation of non-convergent semiclassical trace formulae. We propose a method for semiclassical quantization based upon the Pade approximant to the periodic orbit sums. The Pade approximant allows the re-summation of the typically exponentially divergent periodic orbit terms. The technique does not depend on the existence of a symbolic dynamics and can be applied to both bound and open systems. Numerical results are presented for two different systems with chaotic and regular classical dynamics, viz. the three-disk scattering system and the circle billiard.Comment: 7 pages, 3 figures, submitted to Europhys. Let

    The hydrogen atom in an electric field: Closed-orbit theory with bifurcating orbits

    Full text link
    Closed-orbit theory provides a general approach to the semiclassical description of photo-absorption spectra of arbitrary atoms in external fields, the simplest of which is the hydrogen atom in an electric field. Yet, despite its apparent simplicity, a semiclassical quantization of this system by means of closed-orbit theory has not been achieved so far. It is the aim of this paper to close that gap. We first present a detailed analytic study of the closed classical orbits and their bifurcations. We then derive a simple form of the uniform semiclassical approximation for the bifurcations that is suitable for an inclusion into a closed-orbit summation. By means of a generalized version of the semiclassical quantization by harmonic inversion, we succeed in calculating high-quality semiclassical spectra for the hydrogen atom in an electric field
    corecore