2,702 research outputs found
Semiclassical quantization with bifurcating orbits
Bifurcations of classical orbits introduce divergences into semiclassical
spectra which have to be smoothed with the help of uniform approximations. We
develop a technique to extract individual energy levels from semiclassical
spectra involving uniform approximations. As a prototype example, the method is
shown to yield excellent results for photo-absorption spectra for the hydrogen
atom in an electric field in a spectral range where the abundance of
bifurcations would render the standard closed-orbit formula without uniform
approximations useless. Our method immediately applies to semiclassical trace
formulae as well as closed-orbit theory and offers a general technique for the
semiclassical quantization of arbitrary systems
Photoabsorption spectra of the diamagnetic hydrogen atom in the transition regime to chaos: Closed orbit theory with bifurcating orbits
With increasing energy the diamagnetic hydrogen atom undergoes a transition
from regular to chaotic classical dynamics, and the closed orbits pass through
various cascades of bifurcations. Closed orbit theory allows for the
semiclassical calculation of photoabsorption spectra of the diamagnetic
hydrogen atom. However, at the bifurcations the closed orbit contributions
diverge. The singularities can be removed with the help of uniform
semiclassical approximations which are constructed over a wide energy range for
different types of codimension one and two catastrophes. Using the uniform
approximations and applying the high-resolution harmonic inversion method we
calculate fully resolved semiclassical photoabsorption spectra, i.e.,
individual eigenenergies and transition matrix elements at laboratory magnetic
field strengths, and compare them with the results of exact quantum
calculations.Comment: 26 pages, 9 figures, submitted to J. Phys.
Decimation and Harmonic Inversion of Periodic Orbit Signals
We present and compare three generically applicable signal processing methods
for periodic orbit quantization via harmonic inversion of semiclassical
recurrence functions. In a first step of each method, a band-limited decimated
periodic orbit signal is obtained by analytical frequency windowing of the
periodic orbit sum. In a second step, the frequencies and amplitudes of the
decimated signal are determined by either Decimated Linear Predictor, Decimated
Pade Approximant, or Decimated Signal Diagonalization. These techniques, which
would have been numerically unstable without the windowing, provide numerically
more accurate semiclassical spectra than does the filter-diagonalization
method.Comment: 22 pages, 3 figures, submitted to J. Phys.
A Minimal Periods Algorithm with Applications
Kosaraju in ``Computation of squares in a string'' briefly described a
linear-time algorithm for computing the minimal squares starting at each
position in a word. Using the same construction of suffix trees, we generalize
his result and describe in detail how to compute in O(k|w|)-time the minimal
k-th power, with period of length larger than s, starting at each position in a
word w for arbitrary exponent and integer . We provide the
complete proof of correctness of the algorithm, which is somehow not completely
clear in Kosaraju's original paper. The algorithm can be used as a sub-routine
to detect certain types of pseudo-patterns in words, which is our original
intention to study the generalization.Comment: 14 page
Semiclassical quantization of the hydrogen atom in crossed electric and magnetic fields
The S-matrix theory formulation of closed-orbit theory recently proposed by
Granger and Greene is extended to atoms in crossed electric and magnetic
fields. We then present a semiclassical quantization of the hydrogen atom in
crossed fields, which succeeds in resolving individual lines in the spectrum,
but is restricted to the strongest lines of each n-manifold. By means of a
detailed semiclassical analysis of the quantum spectrum, we demonstrate that it
is the abundance of bifurcations of closed orbits that precludes the resolution
of finer details. They necessitate the inclusion of uniform semiclassical
approximations into the quantization process. Uniform approximations for the
generic types of closed-orbit bifurcation are derived, and a general method for
including them in a high-resolution semiclassical quantization is devised
Utilizing Emerging Designs and Practices to Improve Student Learning
In this session, we will share an overview of the current framework for understanding student learning approaches and give participants an opportunity to reflect on their own practices and how that may impact students. We will then discuss innovative ideas that can be transported into classrooms in order to improve learning approaches, such as metacognition development, assessment adjustments, study skills training, and becoming aware of instructor’s approaches to teaching
Facilitating Faculty Development to Promote Self-Directed Learning
In the U. S., only 63% of college students complete their degree, making it critical for universities to explore interventions that encourage student success. The foundational learning activity for college success is studying. However, several studies reveal that students lack effective study habits, especially regarding the quality and quantity of time-on-task. We will share a model of faculty development that tackles this challenge through course and assignment revisions that promote self-directed learning, metacognition, and generally improving students’ learning approaches
Utilizing Emerging Designs and Practices to Improve Student Learning
In this session, we will share an overview of the current framework for understanding student learning approaches and give participants an opportunity to reflect on their own practices and how that may impact students. We will then discuss innovative ideas that can be transported into classrooms in order to improve learning approaches, such as metacognition development, assessment adjustments, study skills training, and becoming aware of instructor’s approaches to teaching
Semiclassical Quantization by Pade Approximant to Periodic Orbit Sums
Periodic orbit quantization requires an analytic continuation of
non-convergent semiclassical trace formulae. We propose a method for
semiclassical quantization based upon the Pade approximant to the periodic
orbit sums. The Pade approximant allows the re-summation of the typically
exponentially divergent periodic orbit terms. The technique does not depend on
the existence of a symbolic dynamics and can be applied to both bound and open
systems. Numerical results are presented for two different systems with chaotic
and regular classical dynamics, viz. the three-disk scattering system and the
circle billiard.Comment: 7 pages, 3 figures, submitted to Europhys. Let
The hydrogen atom in an electric field: Closed-orbit theory with bifurcating orbits
Closed-orbit theory provides a general approach to the semiclassical
description of photo-absorption spectra of arbitrary atoms in external fields,
the simplest of which is the hydrogen atom in an electric field. Yet, despite
its apparent simplicity, a semiclassical quantization of this system by means
of closed-orbit theory has not been achieved so far. It is the aim of this
paper to close that gap. We first present a detailed analytic study of the
closed classical orbits and their bifurcations. We then derive a simple form of
the uniform semiclassical approximation for the bifurcations that is suitable
for an inclusion into a closed-orbit summation. By means of a generalized
version of the semiclassical quantization by harmonic inversion, we succeed in
calculating high-quality semiclassical spectra for the hydrogen atom in an
electric field
- …